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Abstract 

Objectives To develop a radiomics model in contrast-enhanced cone-beam breast CT (CE-CBBCT) for preoperative 
prediction of axillary lymph node (ALN) status and metastatic burden of breast cancer.

Methods Two hundred and seventy-four patients who underwent CE-CBBCT examination with two scanners 
between 2012 and 2021 from two institutions were enrolled. The primary tumor was annotated in each patient image, 
from which 1781 radiomics features were extracted with PyRadiomics. After feature selection, support vector machine 
models were developed to predict ALN status and metastatic burden. To avoid overfitting on a specific patient subset, 100 
randomly stratified splits were made to assign the patients to either training/fine-tuning or test set. Area under the receiver 
operating characteristic curve (AUC) of these radiomics models was compared to those obtained when training the models 
only with clinical features and combined clinical-radiomics descriptors. Ground truth was established by histopathology.

Results One hundred and eighteen patients had ALN metastasis (N + (≥ 1)). Of these, 74 had low burden (N + (1–2)) 
and 44 high burden (N + (≥ 3)). The remaining 156 patients had none (N0). AUC values across the 100 test repeats 
in predicting ALN status (N0/N + (≥ 1)) were 0.75 ± 0.05 (0.67–0.93, radiomics model), 0.68 ± 0.07 (0.53–0.85, clinical 
model), and 0.74 ± 0.05 (0.67–0.88, combined model). For metastatic burden prediction (N + (1–2)/N + (≥ 3)), AUC 
values were 0.65 ± 0.10 (0.50–0.88, radiomics model), 0.55 ± 0.10 (0.40–0.80, clinical model), and 0.64 ± 0.09 (0.50–
0.90, combined model), with all the ranges spanning 0.5. In both cases, the radiomics model was significantly better 
than the clinical model (both p < 0.01) and comparable with the combined model (p = 0.56 and 0.64).

Conclusions Radiomics features of primary tumors could have potential in predicting ALN metastasis in CE-CBBCT imaging.

Clinical relevance statement The findings support potential clinical use of radiomics for predicting axillary lymph 
node metastasis in breast cancer patients and addressing the limited axilla coverage of cone-beam breast CT.

Key Points 

• Contrast-enhanced cone-beam breast CT-based radiomics could have potential to predict N0 vs. N + (≥ 1) and, to a limited 
extent, N + (1–2) vs. N + (≥ 3) from primary tumor, and this could help address the limited axilla coverage, pending future 
verifications on larger cohorts.
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• The average AUC of radiomics and combined models was significantly higher than that of clinical models but showed no 
significant difference between themselves.

• Radiomics features descriptive of tumor texture were found informative on axillary lymph node status, highlighting a higher 
heterogeneity for tumor with positive axillary lymph node.

Keywords Breast neoplasms, Lymphatic metastasis, Machine learning, Cone-beam computed tomography, 
Radiomics

Introduction
Breast cancer is currently the most common malignancy 
and the leading cancer-related cause of death in females 
worldwide [1]. Patients with positive axillary lymph 
node (ALN) status are considered at high risk and need 
to undergo adjuvant chemotherapy generally according 
to NCCN guidelines [2]. Moreover, the American Col-
lege of Surgeons Oncology Group (ACOSOG) Z0011 
trial demonstrated that among patients of clinical T1/
T2 breast cancer with one or two metastatic sentinel LNs 
(i.e., low metastatic burden) who accept breast-conserv-
ing surgery and systemic therapy, the use of sentinel LN 
biopsy (SLNB) alone would not lead to inferior survival 
compared to ALN dissection (ALND) [3]. Therefore, 
ALN status and metastatic burden are decisive factors 
for prognosis and therapeutic decision-making for breast 
cancer patients. SLNB is now a standard procedure and 
has less severe complications compared to ALND. How-
ever, SLNB still has limitations, such as prolonged anes-
thesia time due to the long intraoperative pathology 
waiting time, and potential complications to the upper 
limb (numbness, paresthesia, and lymphedema) [4]. 
Hence, it is desirable to develop a non-invasive and reli-
able preoperative approach to identify ALN status and 
metastatic burden in patients with breast cancer.

Contrast-enhanced cone-beam breast CT (CE-
CBBCT), which has shown higher comfort level and 
diagnostic efficiency than mammography [5, 6] and faster 
acquisition and comparability in diagnostic performance 
to CE-MRI [6, 7], is a burgeoning technique whose role 
is starting to be recognized in clinical practice [8]. It has 
shown promising results in a variety of clinical settings, 
such as lesion detection and diagnosis [9–13], molecular 
subtyping [14, 15], extent-of-disease evaluation [16, 17], 
and breast density assessment [18,  19]. However, axilla 
coverage is an inherent limitation of CBBCT due to 
current table and acquisition geometry designs [7,  20]. 
Therefore, since the axillary area cannot be imaged in its 
entirety, the status of ALN cannot be assessed directly 
through visual assessment.

Radiomics, the process of converting medical images 
into high-dimensional, mineable, and quantitative imag-
ing features via high-throughput data extraction algo-
rithms, possibly improves the accuracy of diagnostic, 

predictive, and prognostic models upon simple visual 
interpretation [21]. Although ALNs cannot be entirely 
imaged in CBBCT, quantitative image information 
extracted from the primary tumor through radiomics 
algorithms might yield information on ALN status, as 
already suggested by previous studies performed with 
mammography, ultrasound, and MRI. Yang et  al [22] 
developed a radiomics model based on mammography 
to preoperatively evaluate ALN status, reporting an area 
under the receiver operating characteristic (ROC) curve 
(AUC) of 0.88 in the validation cohort. Yu et al [23] con-
structed a radiomics model for predicting ALN metas-
tasis based on ultrasound, reaching an AUC of 0.71. 
Dong et  al [24] reported an AUC of 0.81 in predicting 
ALN metastasis based on T2WI and DWI MRI imaging. 
CE-CBBCT, thanks to its high resolution and full three-
dimensional nature, might result in improved, or at least 
complementary, characterization capabilities compared 
to other modalities, especially when radiomics methods 
are leveraged [25–27].

At present, to the best of our knowledge, there is no 
study published regarding CBBCT-based radiomics for 
preoperative prediction of ALN status and metastatic 
burden in breast cancer. Hence, the purpose of this study 
was to determine the performance of CBBCT radiomics 
for these tasks, leveraging quantitative imaging biomark-
ers extracted from the primary tumor, and therefore eval-
uate if radiomics could help supplement the limitation of 
the limited axilla coverage in CBBCT.

Materials and methods
Study population
This multicenter retrospective study, conducted following 
the Declaration of Helsinki, was based on two previously 
performed prospective clinical trials (NCT01792999 and 
NCT03861221) approved by the ethics committee of 
Tianjin Medical University Cancer Institute and Hospi-
tal (TCIH) (E2012036 and bc2016039) and Sun Yat-Sen 
University Cancer Center (SYSUCC) (A2011-030-01). 
During these trials, written informed consent including 
permission to re-use the data for any further retrospec-
tive analysis was obtained from every patient at the time 
of enrollment.
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CE scan was performed for patients with BI-RADS 3~5 
lesions identified via mammography or ultrasound and/
or with dense or very dense breast tissue (ACR density 
type c or d) for the purpose of differential diagnosis, 
preoperative staging, and treatment monitoring, unless 
there were known contraindications to iodinated con-
trast media. Only non-contrast CBBCT was offered as an 
alternative to mammography in the screening setting.

A total of 1784 patients who underwent CBBCT from 
May 2012 to June 2021 were initially collected. One 
hundred and  fifty-eight patients with benign lesions 
confirmed by pathology/follow-up and 919 screening par-
ticipants without a lesion were excluded, and 707 patients 
with histologically confirmed breast cancer remained. 
The exclusion criteria were as follows: (1) only conducted 
plain scan, (2) interval between CBBCT examination and 
subsequent surgery exceeded 1 month, (3) received neo-
adjuvant therapy or biopsy before CBBCT examination, 
(4) received preoperative therapy, (5) mass lesion with 
diameter larger than 5 cm (stage T3), (6) only manifested 
as non-mass enhancement (NME) on CE-CBBCT images, 
(7) poor image quality, (8) incomplete clinicopathologic 
data. The patient recruitment flowchart is shown in Fig. 1. 
The largest lesion was selected for further analysis if mul-
tiple lesions or bilateral disease were found, following 

previously published studies [28, 29]. Finally, data from a 
total of 274 patients with 274 breast tumors who met the 
criteria were retrieved. For this study, patients were cat-
egorized into two study cohorts: Study 1—disease-free 
axilla (N0) vs. any axillary metastasis (N + (≥ 1)); Study 
2—low metastatic burden (N + (1–2)) vs. high meta-
static burden (N + (≥ 3)). The clinicopathologic data were 
derived from the medical records. The whole pipeline of 
our study is shown in Fig. 2.

Pathological assessment of ALN
All patients underwent axillary ultrasound first. If 
patients showed negative axilla at ultrasound, SLNB was 
performed by the dye method at surgery. If the SLN was 
positive, and ACOSOG Z0011 criteria were not met (i.e., 
stage T3/T4, N + (≥ 3), mastectomy), ALND was con-
ducted. If patients were found to have suspicious positive 
ALN at ultrasound, an ultrasound-guided fine-needle 
biopsy (FNB) was performed. If there was a histologi-
cally positive ALN on FNB, the patient received ALND. 
If FNB was negative, the patient received SLNB. ALN sta-
tus was confirmed by histopathology. Isolated tumor cells 
(≤ 0.2 mm or deposits ≤ 200 cells) were defined as nega-
tive, whereas micrometastasis (0.2–2.0 mm or deposits 
> 200 cells) and macrometastasis (> 2.0 mm) were both 

Fig. 1 Flowchart of patient recruitment and study design. TCIH, Tianjin Medical University Cancer Institute and Hospital; SYSUCC , Sun Yat-Sen 
University Cancer Center; KBCT, Koning breast CT; CBBCT, cone-beam breast CT
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defined as positive [30]. The results were confirmed by 
two pathologists with more than 10 years of experience.

Imaging system and scan protocol
All patients of the three datasets from two institutions 
preoperatively received CE-CBBCT examination using 
a dedicated flat-panel detector breast CT (KBCT-1000, 
Koning Corporation). Images were obtained from differ-
ent generation CBBCT scanners (version 1.0: Dataset 1&2; 
version 1.5: Dataset 3; specific parameters are summarized 
in Supplementary Material Table  S1). The examination 
was performed with the patient lying prone on the exam 
table. The imaged breast was suspended through the table 
opening into the imaging field without compression. After 
an initial plain scan, 90 ml (Dataset 1&2)/100 ml (Dataset 
3) non-ionic contrast media (Iohexol,  Omnipaque® 300, 
GE Healthcare--Dataset 1&2/Iodixanol,  Visipaque® 270, 
GE Healthcare--Dataset 3) was intravenously injected at 
a rate of 2 ml/s (Dataset 1&2)/2.5 ml/s (Dataset 3) using 
a power injector, followed by a 30 ml saline solution 
chaser (Dataset 1&2)/no saline flush followed (Dataset 3) 
[31,  32]. Both breasts were scanned alternately with the 

affected breast first after contrast media application. The 
CE images of the affected breast were obtained exactly 
at 120 s after the start of contrast injection, and the con-
tralateral breast was imaged at approximately 180 s post-
injection, depending on the time of repositioning. The 
overall examination time was 8–10 min. The mean glan-
dular dose for a complete CE-CBBCT scan was 11.46–
14.68 mGy [14].

Tumor segmentation and feature extraction
Initially, the volumes of interest (VOIs) of all primary 
tumors were semi-automatically delineated in 3D on 
each slice of the CE-CBBCT images by a breast radiolo-
gist with a 10-year CBBCT experience (Y.Z.), blind to any 
pathologic outcomes on tumor and ALN, using 3D Slicer 
software (v.4.11.20210226). For 30 randomly selected 
tumors (from as many patient images), the segmenta-
tion was repeated by another breast radiologist with a 
5-year CBBCT experience (Y.M.) also blind to outcomes, 
with the same software. Next, radiomics features were 
extracted from each tumor using the SlicerRadiomics 
extension of the 3D Slicer software, the in-house feature 

Fig. 2 Schematics of study pipeline. TCIH, Tianjin Medical University Cancer Institute and Hospital; SYSUCC , Sun Yat-Sen University Cancer Center; 
LoG, Laplace of Gaussian; LASSO, least absolute shrinkage selection operator; SVM, Support vector machine; ROC, receiver operating characteristic



Page 5 of 14Zhu et al. European Radiology _#####################_ 

extraction platform developed based on the Python pack-
age “PyRadiomics” [33]. A total of 1781 radiomics features 
were extracted from each VOI using the standard soft-
ware settings. The features included 107 original features 
(14 shape, 18 first-order, 75 texture) and 1674 filter trans-
formed features (744 wavelet, 465 Laplacian of Gaussian 
(LoG) with kernel size of 1–5 voxels, 93 square, 93 square 
root, 93 logarithm, 93 exponential, and 93 gradient). The 
involved features and their definitions are listed in the 
Supplementary Material. The 30 tumors annotated by 
the two radiologists were used to assess the robustness 
of radiomics features to variations in tumor annotations 
from different readers. For this, the intraclass correlation 
coefficient (ICC (2,1)) was used, with a threshold of 0.9 
(i.e., features with an ICC lower than 0.9 were deemed not 
robust to variations in image annotations).

Feature selection and model development
First, features deemed with low robustness to varia-
tions in annotation (ICC < 0.9) were discarded. Second, 
features that were dependent on contrast protocol and 
imaging system characteristics were eliminated. For this, 
the Mann-Whitney U-test was applied to test the median 
values of the features from Dataset 1&2 vs. Dataset 3. 
Features showing a significant difference (p < 0.05) were 
deemed dependent on variations in image acquisition and 
therefore discarded. Correction for multiple comparisons 
was not applied, to be more conservative on the number 
of features to retain. Third, the remaining features were 
z-score normalized (zero mean, unit variance), and those 
with extreme variation from a normal distribution (kur-
tosis > 15) or with too narrow distributions (interquartile 
range, IQR < 1) across patients were discarded as deemed 
non-informative [34]. Finally, highly correlated features 
(Pearson’s r > 0.95) were eliminated. It should be noted 
that all the feature selection steps performed so far were 
performed blind to outcomes or any other patient char-
acteristics, ensuring an unbiased analysis.

After these initial feature selection steps, the patient 
image dataset was divided into training (including inner 
validation) and test sets. To avoid generating potentially 
overconfident results due to evaluating the machine 
learning models on a single subset of cases, we per-
formed a repeated training/test split for 100 iterations. 
For each iteration, the images were divided, randomly 
and on a patient level, into training (including inner vali-
dation) (80%) and test (20%), sampling the data so as to 
maintain the proportion of positive and negative classes 
in the entire dataset.

The last step of feature selection was performed by 
cross-validating (five-fold) a logistic regression model with 
the least absolute shrinkage selection operator (LASSO) 
regularization on the current training (including inner 

validation) set. In five-fold cross-validation, the training 
dataset was divided into five subsets, and in each round 
of the five-fold cross-validation, four subsets were used to 
train the model and one for inner validation and feature 
selection. At each of the 100 iterations, features with the 
lowest LASSO penalties were retained (to prevent overfit-
ting, up to one-tenth of the number of training (including 
inner validation) cases).

Finally, a support vector machine (SVM) model with 
a second-order polynomial kernel was trained with the 
selected features for the 100 iterations to predict ALN 
status and metastatic burden. Hyperparameter tuning 
(i.e., kernel function) was performed, again, on the train-
ing (including inner validation) set following a five-fold 
cross-validation scheme.

The model was then tested (without any further selec-
tion or model tuning) for the 100 iterations on the cor-
responding different subsets of cases devoted to testing, 
allowing for a robust analysis of the performance. Results 
were quantified using average performance metrics 
across the 100 iterations and compared to those obtained 
when training the models (with the same methodology 
described above) using only clinical features, and with 
combined clinical-radiomics features. The frequency 
of the selected features across all iterations was also 
reported.

Statistical analysis
The continuous variables were compared using Student’s 
t-test or Mann-Whitney U-test, as appropriate accord-
ing to the normality of the feature distributions, and the 
categorical variables were compared using chi-square 
test or Fisher’s exact test. The performance of all mod-
els was assessed by diagnostic statistics. AUC results 
were compared by quantifying the p value from the con-
fidence intervals obtained from the variance across the 
iterations, following previously published method [35]. 
All data analyses were performed using Matlab R2021a 
(Mathworks) and SPSS 26.0 (IBM, International Business 
Machines Corp.). A two-tailed p  < 0.05, corrected for 
multiple comparisons (the Bonferroni correction), was 
considered statistically significant.

Results
Patient characteristics
A total of 118 of 274 patients were diagnosed with ALN 
metastasis (N + (≥ 1)), and 74 of those had one or two 
(N + (1–2)) and 44 had more than two (N + (≥ 3)). The 
remaining 156 patients were diagnosed with no ALN 
metastasis (N0). The clinicopathologic characteristics of 
all patients are summarized in Table 1. With correction 
for multiple comparisons, size, histologic type, patho-
logic grade, and Ki-67 index were significantly different 
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Table 1 Clinicopathologic characteristics of all patients

ALN status p Metastatic burden p

N0 N + (≥ 1) N + (1~2) N + (≥ 3)

(n = 156) (n = 118) (n = 74) (n = 44)

Age 50.84 ± 9.42 49.83 ± 10.33 > 0.05 50.07 ± 10.53 49.43 ± 10.07 > 0.05

Menopausal status > 0.05 > 0.05

 Premenopausal 90 (57.7) 63 (53.4) 36 (48.6) 27 (61.4)

 Postmenopausal 66 (42.3) 55 (46.6) 38 (51.4) 17 (38.6)

FGT > 0.05 > 0.05

 Almost entirely fat 3 (1.9) 0 (0.0) 0 (0.0) 0 (0.0)

 Scattered 17 (10.9) 19 (16.1) 13 (17.6) 6 (13.6)

 Heterogeneous 105 (67.3) 78 (66.1) 51 (68.9) 27 (61.4)

 Extreme 31 (19.9) 21 (17.8) 10 (13.5) 11 (25.0)

BPE > 0.05 > 0.05

 Minimal 38 (24.4) 26 (22.0) 16 (21.6) 10 (22.7)

 Mild 59 (37.8) 58 (49.2) 33 (44.6) 25 (56.9)

 Moderate 37 (23.7) 27 (22.9) 20 (27.0) 7 (15.9)

 Marked 22 (14.1) 7 (5.9) 5 (6.8) 2 (4.5)

Presence 0.21 > 0.05

 Mass 126 (80.8) 80 (67.8) 51 (68.9) 29 (65.9)

 Mass with NME 30 (19.2) 38 (32.2) 23 (31.1) 15 (34.1)

Location 0.45 0.36

 Upper outer 58 (37.2) 61 (51.8) 37 (50.0) 24 (54.5)

 Lower outer 30 (19.2) 24 (20.3) 17 (23.0) 7 (15.9)

 Lower inner 15 (9.6) 12 (10.2) 3 (4.1) 9 (20.5)

 Upper inner 51 (32.7) 20 (16.9) 16 (21.5) 4 (9.1)

 Retroareolar 2 (1.3) 1 (0.8) 1 (1.4) 0 (0.0)

Size 2.05 ± 0.89 2.80 ± 1.44 < 0.001* 2.57 ± 1.44 3.18 ± 1.36 0.38

Focality > 0.05 > 0.05

 Unifocal 135 (86.5) 94 (79.7) 59 (79.7) 35 (79.5)

 Multifocal 17 (10.9) 17 (14.4) 10 (13.5) 7 (16.0)

 Multicentric 4 (2.6) 7 (5.9) 5 (6.8) 2 (4.5)

Histologic type 0.03* > 0.05

 DCIS 8 (5.1) 0 (0.0) 0 (0.0) 0 (0.0)

 IDC with DCIS 30 (19.2) 19 (16.1) 14 (18.9) 5 (11.4)

 IDC 106 (68.0) 97 (82.3) 59 (79.7) 38 (86.3)

 ILC 1 (0.6) 1 (0.8) 1 (1.4) 0 (0.0)

 Others 11 (7.1) 1 (0.8) 0 (0.0) 1 (2.3)

Pathologic grade 0.003* > 0.05

 I 13 (8.3) 0 (0.0) 0 (0.0) 0 (0.0)

 II 106 (68.0) 71 (60.2) 45 (60.8) 26 (59.1)

 III 37 (23.7) 47 (39.8) 29 (39.2) 18 (40.9)

ER > 0.05 > 0.05

 Negative 46 (29.5) 46 (39.0) 30 (40.5) 16 (36.4)

 Positive 110 (70.5) 72 (61.0) 44 (59.5) 28 (63.6)

PR 0.35 > 0.05

 Negative 63 (40.4) 64 (54.2) 39 (52.7) 25 (56.8)

 Positive 93 (59.6) 54 (45.8) 35 (47.3) 19 (43.2)

HER2 > 0.05 > 0.05

 Negative 123 (78.8) 83 (70.3) 51 (68.9) 32 (72.7)

 Positive 33 (21.2) 35 (29.7) 23 (31.1) 12 (27.3)
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between N0 and N + (≥ 1) groups, while no clinicopatho-
logic characteristics had significant statistical difference 
between N + (1–2) and N + (≥ 3) groups.

Performance of machine learning models
Of the initial 1781 radiomics features, 296 were found 
not robust to variations in image segmentation, 275 not 
robust to variations in image acquisition, 579 to have 
non-informative distributions, and 205 to have high cor-
relation among each other. As a result of these initial 
selection steps, 426 features were retained. The number 
of features finally selected by LASSO was never larger 
than 21 in each iteration in Study 1, and no more than 9 
in each iteration in Study 2. Figure 3 shows the selection 
frequency and the statistical significance of the features 
from the 100 iterations by LASSO for each model of the 
two experiments.

Of the clinical features, size, histologic type, pathologic 
grade, and Ki-67 index were selected in at least 75/100 
iterations and statistically significant with the Bonfer-
roni correction when predicting ALN status, indicating 
that primary tumors with larger size, more invasiveness, 
higher grade, and higher Ki-67 expression were asso-
ciated with positive ALNs. Of the radiomics features, 
wavelet-HLL_glcm_SumSquares (median [IQR] = 2.21 
[1.73–2.78] vs. 1.74 [1.51–2.17]) and log-sigma-3-0-mm-
3D_glcm_Idn (median [IQR] = 0.93 [0.92–0.95] vs. 0.95 
[0.94–0.96]) were selected in at least 75/100 iterations 

and statistically significant with the Bonferroni correc-
tion (p < 0.001) when predicting ALN status, indicating 
that primary tumors with higher heterogeneity seem to 
be associated with positive ALNs. For metastatic bur-
den prediction, only a single clinical feature (size of the 
primary tumor) had a high selection frequency (96/100) 
and was statistically significant (p = 0.02) initially, but not 
after the Bonferroni correction (p = 0.38). No radiomics 
features were found significant in distinguishing low vs. 
high metastatic burden.

The average AUC values (± one standard devia-
tion) across the 100 test repeats in predicting ALN sta-
tus (N0/N + (≥ 1)) were 0.75 ± 0.05 (radiomics model), 
0.68 ± 0.07 (clinical model), and 0.74 ± 0.05 (combined 
model). For metastatic burden prediction (N + (1–2)/N + 
(≥ 3)), they were 0.65 ± 0.10 (radiomics model), 0.55 ± 
0.10 (clinical model), and 0.64 ± 0.09 (combined model) 
(Fig. 4). Individual performance for each of the 100 train-
ing/test splits is reported in Table  2. The average AUC 
of radiomics and combined models were significantly 
higher than that of clinical models but showed no signifi-
cant difference between themselves.

Discussion
In this study, radiomics models were developed and 
validated for preoperative prediction of ALN status and 
metastatic burden based on CE-CBBCT images. For both 
tasks, the AUCs of the radiomics model were significantly 

Table 1 (continued)

ALN status p Metastatic burden p

N0 N + (≥ 1) N + (1~2) N + (≥ 3)

(n = 156) (n = 118) (n = 74) (n = 44)

Ki-67 0.29 ± 0.21 0.41 ± 0.23 < 0.001* 0.4 ± 0.22 0.41 ± 0.24 > 0.05

Molecular subtype 0.35 > 0.05

 Luminal A 33 (21.2) 10 (8.5) 6 (8.1) 4 (9.2)

 Luminal B 79 (50.6) 62 (52.5) 38 (51.3) 24 (54.5)

 HER2-enriched 20 (12.8) 23 (19.5) 17 (23.0) 6 (13.6)

 Triple-negative 24 (15.4) 23 (19.5) 13 (17.6) 10 (22.7)

Data in parentheses are percentages. Values shown with asterisk indicate statistical significance

p values were corrected for multiple comparisons by a factor equal to the number of descriptors evaluated (n = 15). When the corrected p value was larger than 1, it 
demonstrated as > 0.05

ALN, axillary lymph node; FGT, fibroglandular tissue; BPE, background parenchymal enhancement; NME, non-mass enhancement; DCIS, ductal carcinoma in situ; IDC, 
invasive ductal carcinoma; ILC, invasive lobular carcinoma; ER, estrogen receptor; PR, progesterone receptor; HER2, human epidermal growth factor receptor 2

(See figure on next page.)
Fig. 3 Heat map of selection frequency of clinical and radiomics features from 100 iterations by LASSO for each model in predicting ALN status 
and metastatic burden. The higher the selection frequency, the darker the blue color. Features that had never been selected by LASSO in any 
model were ignored. Values shown in orange indicate statistical significance. p values were corrected for multiple comparisons by a factor 
equal to the number of descriptors evaluated (Status-Clinical n = 13; Status-Radiomics n = 23; Status-Combined n = 26; Burden-Clinical n = 15; 
Burden-Radiomics n = 54; Burden-Combined n = 60). LASSO, least absolute shrinkage selection operator; ALN, axillary lymph node
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Fig. 3 (See legend on previous page.)
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higher than those based only on clinicopathologic indica-
tors. Combining radiomics and clinical features resulted 
in no relevant performance improvements compared to 
the radiomics model alone.

Previously, several mammography, ultrasound, and 
MRI studies have explored the application of radiomics 

analysis of primary tumors in predicting ALN status and 
metastatic burden, and achieved good prediction per-
formance, with AUC ranging from 0.64 to 0.89 and from 
0.74 to 0.79 [36–38], respectively. Some studies incorpo-
rated ultrasound or MRI report of ALN or clinicopatho-
logic characteristics to construct nomogram for further 

Fig. 4 ROC curves of pooled performance of clinical, radiomics, and combined models in predicting ALN status and metastatic burden. The 
average AUC of radiomics models was superior to clinical models (both p < 0.01), and comparable with combined models (p = 0.56 and 0.64, 
respectively). For each ROC curve, the average AUC (± standard deviation) across 100 test repeats is shown. Numbers in parentheses indicate 
the AUC ranges. ROC, receiver operating characteristic; ALN, axillary lymph node; AUC , area under the curve
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improvement compared to radiomics alone [22, 23, 29, 
39–46], even with some factors that were only available 
postoperatively, such as lymph-vascular invasion [45] 
and genomic data [46]. To the best of our knowledge, 
this is the first study on the prediction of ALN status and 
metastatic burden by CBBCT-based radiomics, using 
only preoperative imaging data, clinical information, and 
pathologic results of the primary breast tumor obtained 
from biopsy.

Obtaining radiomics results that are robust and gen-
eralizable within and across institutions is currently a 
significant challenge for the clinical translation of radi-
omics [47]. A recent study has shown that the use of a 
single random training/test set split may lead to unreli-
able results in small-sample radiomics studies [48]. With 
the objective to test the potential generalizability of our 
radiomics model, and provide more conservative results, 
we randomly divided the dataset into training (including 
inner validation) and test sets 100 times, each time using 
the training (including inner validation) set (in a five-fold 
cross-validation scheme) for feature selection and model 
development, and the test set uniquely for result assess-
ment. Overall, satisfactory results were obtained for the 
prediction of ALN status (considering that all analyses 
were performed from the primary tumor only), point-
ing to the value of radiomics compared to simple clinical 
models. For the prediction of metastatic burden, perfor-
mance was moderate, indicating that limited information 
is contained in primary tumors that may be used to dif-
ferentiate between low- and high-burden ALN metasta-
sis. While average results for ALN status were promising, 
and in line with previous literature on different modali-
ties, individual AUC values varied considerably across 
the 100 training/test repeats. This demonstrates that 
prediction performance may vary considerably accord-
ing to differences in datasets, and therefore future stud-
ies with larger sets are needed before a unique radiomics 
model can be developed, and to conclusively assess the 
potential presence of significant CE-CBBCT-based 
image biomarkers quantifiable through radiomics that 
are predictive of ALN status. In this study, we adopted a 
multi-step feature selection process blind to outcomes to 

discard non-robust, uninformative, and highly correlated 
features, followed by LASSO applied in a cross-validated 
fashion. In future work, additional feature selection or 
dimensionality reduction approaches could be inves-
tigated, to evaluate systematically how each method 
impacts the classification results.

There was no statistical difference in terms of predic-
tive efficacy between the combined and radiomics mod-
els in our study, which was not consistent with some 
previous studies. This perhaps related to the imaging-
reported ALN status added into the construction of com-
bined model in some studies, while our study was only 
based on the primary tumor. According to the “seed and 
soil” theory [49], ALN metastasis initiation depends on 
the synergies of tumor cells (seed) and ALN microen-
vironment (soil), which may explain why including the 
ultrasound or MRI report of ALN could improve the per-
formance of prediction model. In addition, the preopera-
tive clinicopathologic factors may have little contribution 
to the combined model of ALN metastasis prediction. 
Tumor-based clinicopathologic features are the exter-
nal manifestations of intratumoral heterogeneity [50]. 
Radiomics features acquired from macroscopic images 
could comprehensively reflect the innate heterogeneity 
of tumors. Therefore, the tumor-based clinicopathologic 
features may be redundant in improving the predict-
ing performance, as shown by our results. Furthermore, 
another possible explanation may be the limited dataset 
of our study, in which radiomics features had stronger 
prediction performance than clinical indicators and thus 
were more frequently selected during the 100 iterations 
for developing the combined model. This could lower 
the impact of potentially relevant clinical descriptors. 
Perhaps the impact of clinical descriptors could become 
higher with larger cohorts, where a larger number of 
features can be selected and used. Of course, additional 
studies with larger datasets are needed to further explore 
these findings.

In the literature, relatively high AUCs of some previ-
ous studies for ALN status and metastatic burden pre-
diction were obtained. The reasons may be twofold. On 
the one hand, some modalities (e.g., multiparametric 

Table 2 Diagnostic value of clinical, radiomics, and combined models in predicting ALN status and metastatic burden in test cohort

ALN axillary lymph node, PPV positive predictive value, NPV negative predictive value, AUC  area under the curve, AVG average, SD standard deviation, MIN minimum, 
MAX maximum
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MRI, PET-CT) allow for the capture of information in a 
way that CBBCT currently cannot achieve (hemodynam-
ics, diffusion, metabolics) [24, 39, 51]. Further investiga-
tion is needed to make it clear whether adding temporal 
information to CBBCT [52, 53] will contribute to better 
predictive performance of ALN metastasis. On the other 
hand, differences in performance might be due to varia-
tions in datasets and training/validation/test split, as well 
as in methodology in general. Even within previously 
published literature, likely for the same reason, the results 
reported differ considerably [22, 40, 41]. Therefore, at the 
moment, all we can conclude is that our findings seem to 
be in line with previous literature, but direct and objec-
tive comparisons are currently impossible to achieve.

The Memorial Sloan-Kettering Cancer Center 
(MSKCC) nomogram is the most well-known method to 
predict ALN status with an AUC of 0.754, which has been 
widely validated in different populations [54]. However, 
the MSKCC model uses some parameters that can only be 
obtained after surgery, such as lymphovascular invasion, 
and does not include any imaging features. Compared 
with the MSKCC nomogram, our model has similar pre-
diction performance and has the advantage of evaluating 
ALN metastasis preoperatively and non-invasively. This 
could be beneficial to facilitate clinical utility and assist 
physicians in predicting the risk of ALN metastasis (pend-
ing more extensive and heterogeneous validations).

Although the frequency of the selected features across 
the 100 repeats varied considerably, a few clinical and 
radiomics descriptors were selected most often for the 
prediction of ALN status. Ki-67 index (selected 99/100 
and 67/100 in the clinical and combined models, respec-
tively) is an indicator of tumor aggressiveness and pro-
liferative activity, in which a higher expression level 
indicates more aggressive growth of breast cancer [55]. 
Wavelet-HLL_glcm_SumSquares (selected 85/100 and 
69/100 in the radiomics and combined models, respec-
tively) and log-sigma-3-0-mm-3D_glcm_Idn (selected 
100/100 in both the radiomics and combined models) are 
high-order features that reflect intratumor heterogene-
ity. The former is obtained from the gray level cooccur-
rence matrix of the image, after decomposing the image 
with high-pass filtering. The latter is also obtained from 
the image gray level cooccurrence matrix, this time after 
filtering with LoG (an edge enhancement filter). They 
both emphasize areas of gray level change, i.e., intratu-
mor heterogeneity, which seems to be better captured 
by these two high-order statistical descriptors than by 
other simpler texture features. This could be due to subtle 
details in the tumor texture that seem to be highlighted 
only through the transformation of the image obtained 
with high-order filtering. Although it is impossible to 
determine exactly which biological characteristics are 

captured by these two features, we hypothesize that 
these subtle details might be related to small alterations 
in microvessel density and in the tumor microenviron-
ment [56, 57]. These alterations, due to angiogenesis and 
microenvironmental changes, might be too subtle to be 
captured by simpler texture features, and might instead 
become highlighted only by more advanced, higher-
order descriptors. All in all, the higher the aggressive-
ness and heterogeneity of the primary cancer, the higher 
seems to be the possibility of ALN metastasis. However, 
for metastatic burden prediction, no radiomics features 
were selected with consistent frequency across the train-
ing/test repeats; only the tumor size as a clinical indica-
tor had a high selection frequency, but with no statistical 
significance.

Our study has some limitations. First, due to CBBCT 
still being a relatively new breast imaging modality, lim-
ited sample size and unbalanced data distribution existed 
in this study. Although the size of our dataset is in line 
with many previously reported exploratory radiomics 
studies [22,  24,  40,  45], larger and more heterogeneous 
datasets are needed in the future to confirm our find-
ings, especially those pertaining to metastatic burden 
prediction. Additionally, in this study, we did not explic-
itly correct for the class imbalance present in our dataset 
(for both ALN status and metastatic burden prediction). 
This was due to the moderate imbalance ratio (43% : 57% 
for ALN status, 37%  :  63% for metastatic burden), and 
to respect the proportion of positive and negative cases 
as found in the clinical realm [39,  44]. Instead, to maxi-
mize the prevention from biased results, we adopted sim-
ple machine learning models (less prone to overfitting or 
skewed datasets), and we used ROC and AUC as figures 
of merit across the 100 test repeats. Of course, future 
studies with larger datasets ought to be performed to fur-
ther confirm our results. Second, selection bias inevitably 
remained in this retrospective study. For multifocal/multi-
centric cancers, only the largest mass was considered, and 
this may ignore the influence of other foci. We performed 
this choice to be consistent with the AJCC 8th edition 
staging system, where the T category is based on the size 
of the largest mass (when multiple masses are present). In 
other words, for multifocal and multicentric disease, the 
size of the largest tumor rather than the sum of all foci 
is used for clinical or pathologic tumor classification (cT 
or pT) [58, 59]. In future work, and with larger datasets, 
the inclusion of additional foci for multifocal/multicen-
tric cancers should be investigated, to evaluate whether 
this brings any benefits in terms of radiomics analyses. 
Besides, NME was excluded, due to the difficulty of delin-
eating its boundary precisely. Furthermore, only images 
of patients with BI-RADS 3~5 and/or ACR density type 
c or d were used in our study, due to the inclusion criteria 
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of the two prospective clinical trials during which the 
data were acquired. Therefore, future studies are needed 
with more heterogeneous datasets. Third, the pathologic 
result of ALN was confirmed by combining SLNB and 
ALND as the reference, which is the clinical gold stand-
ard [30]. However, it should be noted that SLNB has an 
overall false-negative rate of 8.61%, ranging from 0 to 
27.3% according to different injection materials and sites 
[60], which could have some impact on the results of this 
study. Fourth, the images in our study were collected by 
two different devices but from the same vendor (Koning 
BCT). The reproducibility with other BCT devices, as well 
as with other datasets, remains to be investigated. Mean-
while, in future work, when larger and more heterogene-
ous datasets become available, harmonization strategies 
may be adopted to reduce the heterogeneity in imaging 
parameters [61]. This would be especially important when 
additional breast CT devices are introduced for clinical 
use, to lower the impact of differences in imaging settings 
to the extracted radiomics signature. Last, although we 
followed the radiomics quality score (RQS) [62] when per-
forming our radiomics analysis, where applicable, some 
criteria could not be met due to inherent characteristics 
of our study (imaging at multiple time points, prospective 
study, cost-effectiveness).

Future work may include the evaluation of peritumoral 
features, which may further improve the prediction per-
formance [28,  63], and, if larger datasets become avail-
able, deep learning approaches [29, 64].

Conclusion
Radiomics features of primary tumors in CE-CBBCT 
images have the potential to predict the extent of ALN 
involvement prior to surgery. This could be especially 
important in CBBCT, since it could help address the lim-
ited axilla coverage. Furthermore, this might have the 
potential to aid in clinical decision-making, especially to 
mitigate false-negative SLNB findings, pending further 
validation with larger prospective cohorts.
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