24 research outputs found

    Macrophage-Induced Lymphangiogenesis and Metastasis following Paclitaxel Chemotherapy Is Regulated by VEGFR3

    Get PDF
    While chemotherapy strongly restricts or reverses tumor growth, the response of host tissue to therapy can counteract its anti-tumor activity by promoting tumor re-growth and/or metastases, thus limiting therapeutic efficacy. Here, we show that vascular endothelial growth factor receptor 3 (VEGFR3)-expressing macrophages infiltrating chemotherapy-treated tumors play a significant role in metastasis. They do so in part by inducing lymphangiogenesis as a result of cathepsin release, leading to VEGF-C upregulation by heparanase. We found that macrophages from chemotherapy-treated mice are sufficient to trigger lymphatic vessel activity and structure in naive tumors in a VEGFR3-dependent manner. Blocking VEGF-C/VEGFR3 axis inhibits the activity of chemotherapy-educated macrophages, leading to reduced lymphangiogenesis in treated tumors. Overall, our results suggest that disrupting the VEGF-C/VEGFR3 axis not only directly inhibits lymphangiogenesis but also blocks the pro-metastatic activity of macrophages in chemotherapy-treated mice

    Targeting of prion-infected lymphoid cells to the central nervous system accelerates prion infection

    Get PDF
    BACKGROUND: Prions, composed of a misfolded protein designated PrP(Sc), are infectious agents causing fatal neurodegenerative diseases. We have shown previously that, following induction of experimental autoimmune encephalomyelitis, prion-infected mice succumb to disease significantly earlier than controls, concomitant with the deposition of PrP(Sc) aggregates in inflamed white matter areas. In the present work, we asked whether prion disease acceleration by experimental autoimmune encephalomyelitis results from infiltration of viable prion-infected immune cells into the central nervous system. METHODS: C57Bl/6 J mice underwent intraperitoneal inoculation with scrapie brain homogenates and were later induced with experimental autoimmune encephalomyelitis by inoculation of MOG(35-55) in complete Freund's adjuvant supplemented with pertussis toxin. Spleen and lymph node cells from the co-induced animals were reactivated and subsequently injected into naĂŻve mice as viable cells or as cell homogenates. Control groups were infected with viable and homogenized scrapie immune cells only with complete Freund's adjuvant. Prion disease incubation times as well as levels and sites of PrP(Sc) deposition were next evaluated. RESULTS: We first show that acceleration of prion disease by experimental autoimmune encephalomyelitis requires the presence of high levels of spleen PrP(Sc). Next, we present evidence that mice infected with activated prion-experimental autoimmune encephalomyelitis viable cells succumb to prion disease considerably faster than do mice infected with equivalent cell extracts or other controls, concomitant with the deposition of PrP(Sc) aggregates in white matter areas in brains and spinal cords. CONCLUSIONS: Our results indicate that inflammatory targeting of viable prion-infected immune cells to the central nervous system accelerates prion disease propagation. We also show that in the absence of such targeting it is the load of PrP(Sc) in the inoculum that determines the infectivity titers for subsequent transmissions. Both of these conclusions have important clinical implications as related to the risk of prion disease contamination of blood products

    Cellular Transcription Factor Sp1 Recruits Simian Virus 40 Capsid Proteins to the Viral Packaging Signal, ses

    No full text
    Simian virus 40 (SV40) capsid assembly occurs in the nucleus. All three capsid proteins bind DNA nonspecifically, raising the dilemma of how they attain specificity to the SV40 minichromosome in the presence of a large excess of genomic DNA. The SV40 packaging signal, ses, which is required for assembly, is composed of multiple DNA elements that bind transcription factor Sp1. Our previous studies showed that Sp1 participates in SV40 assembly and that it cooperates in DNA binding with VP2/3. We hypothesized that Sp1 recruits the capsid proteins to the viral minichromosome, conferring upon them specific DNA recognition. Here, we have tested the hypothesis. Computer analysis showed that the combination of six tandem GC boxes at ses is not found at cellular promoters and therefore is unique to SV40. Cooperativity in DNA binding between Sp1 and VP2/3 was not abolished at even a 1,000-fold excess of cellular DNA, providing strong support for the recruitment hypothesis. Sp1 also binds VP1 and cooperates with VP1 in DNA binding. VP1 pentamers (VP1(5)) avidly interact with VP2/3, utilizing the same VP2/3 domain as described for polyomavirus. We conclude that VP1(5)-VP2/3 building blocks are recruited by Sp1 to ses, where they form the nucleation center for capsid assembly. By this mechanism the virus ensures that capsid formation is initiated at a single site around its minichromosome. Sp1 enhances the formation of SV40 pseudovirions in vitro, providing additional support for the model. Analyses of Sp1 and VP3 deletion mutants showed that Sp1 and VP2/3 bind one another and cooperate in DNA binding through their DNA-binding domains, with additional contacts outside these domains. VP1 contacts Sp1 at residues outside the Sp1 DNA-binding domain. These and additional data allowed us to propose a molecular model for the VP1(5)-VP2/3-DNA-Sp1 complex

    pH stability and disassembly mechanism of wild-type simian virus 40

    No full text
    Viruses are remarkable self-assembled nanobiomaterial-based machines, exposed to a wide range of pH values. Extreme pH values can induce dramatic structural changes, critical for the function of the virus nanoparticles, including assembly and genome uncoating. Tuning cargo–capsid interactions is essential for designing virus-based delivery systems. Here we show how pH controls the structure and activity of wild-type simian virus 40 (wtSV40) and the interplay between its cargo and capsid. Using cryo-TEM and solution X-ray scattering, we found that wtSV40 was stable between pH 5.5 and 9, and only slightly swelled with increasing pH. At pH 3, the particles aggregated, while capsid protein pentamers continued to coat the virus cargo but lost their positional correlations. Infectivity was only partly lost after the particles were returned to pH 7. At pH 10 or higher, the particles were unstable, lost their infectivity, and disassembled. Using time-resolved experiments we discovered that disassembly began by swelling of the particles, poking a hole in the capsid through which the genetic cargo escaped, followed by a slight shrinking of the capsids and complete disassembly. These findings provide insight into the fundamental intermolecular forces, essential for SV40 function, and for designing virus-based nanobiomaterials, including delivery systems and antiviral drugs

    High‐fat diet and oral infection induced type 2 diabetes and obesity development under different genetic backgrounds

    No full text
    Abstract Background Type 2 diabetes (T2D) is an adult‐onset and obese form of diabetes caused by an interplay between genetic, epigenetic, and environmental components. Here, we have assessed a cohort of 11 genetically different collaborative cross (CC) mouse lines comprised of both sexes for T2D and obesity developments in response to oral infection and high‐fat diet (HFD) challenges. Methods Mice were fed with either the HFD or the standard chow diet (control group) for 12 weeks starting at the age of 8 weeks. At week 5 of the experiment, half of the mice of each diet group were infected with Porphyromonas gingivalis and Fusobacterium nucleatum bacteria strains. Throughout the 12‐week experimental period, body weight (BW) was recorded biweekly, and intraperitoneal glucose tolerance tests were performed at weeks 6 and 12 of the experiment to evaluate the glucose tolerance status of mice. Results Statistical analysis has shown the significance of phenotypic variations between the CC lines, which have different genetic backgrounds and sex effects in different experimental groups. The heritability of the studied phenotypes was estimated and ranged between 0.45 and 0.85. We applied machine learning methods to make an early call for T2D and its prognosis. The results showed that classification with random forest could reach the highest accuracy classification (ACC = 0.91) when all the attributes were used. Conclusion Using sex, diet, infection status, initial BW, and area under the curve (AUC) at week 6, we could classify the final phenotypes/outcomes at the end stage of the experiment (at 12 weeks)

    Molecular Imaging of Cancer Using X‑ray Computed Tomography with Protease Targeted Iodinated Activity-Based Probes

    No full text
    X-ray computed tomography (CT) is a robust, precise, fast, and reliable imaging method that enables excellent spatial resolution and quantification of contrast agents throughout the body. However, CT is largely inadequate for molecular imaging applications due mainly to its low contrast sensitivity that forces the use of large concentrations of contrast agents for detection. To overcome this limitation, we generated a new class of iodinated nanoscale activity-based probes (IN-ABPs) that sufficiently accumulates at the target site by covalently binding cysteine cathepsins that are exceptionally highly expressed in cancer. The IN-ABPs are comprised of a short targeting peptide selective to specific cathepsins, an electrophilic moiety that allows activity-dependent covalent binding, and tags containing dendrimers with up to 48 iodine atoms. IN-ABPs selectively bind and inhibit activity of recombinant and intracellular cathepsin B, L, and S. We compared the in vivo kinetics, biodistribution, and tumor accumulation of IN-ABPs bearing 18 and 48 iodine atoms each, and their control counterparts lacking the targeting moiety. Here we show that although both IN-ABPs bind specifically to cathepsins within the tumor and produce detectable CT contrast, the 48-iodine bearing IN-ABP was found to be optimal with signals over 2.1-fold higher than its nontargeted counterpart. In conclusion, this study shows the synthetic feasibility and potential utility of IN-ABPs as potent contrast agents that enable molecular imaging of tumors using CT
    corecore