80 research outputs found

    Validation of integrated pest management module against insect pests of pigeonpea, Cajanus cajan in Tarai region of Uttarakhand

    Get PDF
    Experiments on validation of integrated pest management (IPM) module against insect pest of pigeonpea in comparison with the Non-IPM (farmer’s practices) were conducted at N.E.B. Crop Research Centre, G. B. Pant University of Agriculture & Technology, Pantnagar during Kharif 2014 and 2015. Adopted IPM module contained Seed treatment with Trichoderma spp. @10g/kg of seed, Sole crop, Bird perches @ 50/ha, need based insecticides spray (Chlorantraniliprole 18.5SC @ 30 g a. i./ha; Neem soap@10g/lit; Acetamiprid 20SP @ 20 g a. i./ha). The results indicated that minimum population of pod borers (Helicoverpa armigera,Maruca vitrata and podfly) and sucking insects (aphids, jassids, pod bug) was reported in IPM plots and maximum population of insects was observed in Non-IPM plots. Percent insect control over non-IPM was 50.98 % for H. armigera, 44.69 % for M. vitrata and 19.17 % for Maruca webbing were recorded. While, for sucking pest complex, insect control over non-IPM was 51.59 %, 40.36 % and 36.17 % against jassids, aphids and tur pod bug, respectively. Similarly, minimum pod borer damage (6.48 and 7.71 %) was recorded in IPM plots as compared to maximum pod borer damage (8.37 and 8.22 %) in non-IPM plots, respectively during 2014 and 2015. Whereas, pooled grain yield for IPM plots was 1286.5 kg/ha for both seasons as against 888 kg/ha in non-IPM plots with 1:2.89 benefit cost ratio. Hence, It is apparent that studied IPM module was able to increase the yield of pigeonepea with lower cost of production as against non-IPM thus it would be benefiting the farmers

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    First measurement of Ωc0 production in pp collisions at s=13 TeV

    Get PDF
    The inclusive production of the charm–strange baryon 0 c is measured for the first time via its hadronic √ decay into −π+ at midrapidity (|y| <0.5) in proton–proton (pp) collisions at the centre-of-mass energy s =13 TeV with the ALICE detector at the LHC. The transverse momentum (pT) differential cross section multiplied by the branching ratio is presented in the interval 2 < pT < 12 GeV/c. The pT dependence of the 0 c-baryon production relative to the prompt D0-meson and to the prompt 0 c-baryon production is compared to various models that take different hadronisation mechanisms into consideration. In the measured pT interval, the ratio of the pT-integrated cross sections of 0 c and prompt + c baryons multiplied by the −π+ branching ratio is found to be larger by a factor of about 20 with a significance of about 4σ when compared to e+e− collisions

    Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions

    Get PDF
    Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2{ SP} in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair √ 2.76 TeV and Xe ions at √ sNN = sNN =5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and 0.2–6 GeV/c ranges, respectively. The ratio between v2{ SP} and the elliptic flow coefficient relative to the participant plane v2{4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio v2{ SP}/v2{4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state f luctuations. The ratios of v2{ SP} and v2{4} to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of (7.0 ±0.9)%with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC

    A least-squares method for the design of two-reflector optical systems

    No full text
    The purpose of this paper is to present a method for the design of two-reflector optical systems that transfer a given energy density of the source to a desired energy density at the target. It is known that the two-reflector design problem gives rise to a Monge–Ampère (MA) equation with transport boundary condition. We solve this boundary value problem using a recently developed least-squares algorithm (Prins et al 2015 J. Sci. Comput. 37 B937–61). It is one of the few numerical algorithms capable to solve these type of problems efficiently. The least-squares algorithm can provide two solutions of the MA problem, one is concave and the other one is convex. The reflectors are validated for several numerical examples by a ray-tracer based on Monte-Carlo simulation
    corecore