11 research outputs found

    Study of various reasons for interruption of anti-tubercular treatment in patients of tuberculosis reporting to tertiary care center of west Rajasthan

    Get PDF
    Background: Tuberculosis is a major cause of death in India. Premature cessation of treatment in tuberculosis patient is a leading cause for developing MDR (multidrug resistant tuberculosis) as well as a major threat to control programs. Despite the easy approach and free of cost, availability to antitubercular medicines the interruptions of the treatment are still on a high. So, we analyzed  such various reasons  leading to interrupt the antitubercular treatment.Methods: Total 150 patients who interrupted the antitubercular treatment, were interviewed with a predesigned questionnaire and the result was analyzed.Results: Out of total 150 patients 115 (76.7%)  male and 35 (23.3%)  female were interviewed, who were  having  history of antitubercular treatment interruption. Out of 150 patients, 79 (52.7%) patients stopped their treatment because of improvement. Total 25 (16.7%) patients had stopped their treatment because of high cost, 16 (10.7%) due to personal/family reason, 17 (11.4%) patients had stopped their treatment due to nausea/vomiting/anorexia, 5 (3.3%) due to alcoholism/drug or other addiction, 2 (1.3%) patients  had stopped their treatment because they were advised to stop it  by health personnel and long distance travelled to take drugs.Conclusions: Improvement of symptoms was  the most common reason  in patients who received DOTS treatment and high cost of treatment in patients who received non DOTS treatment. Poor education and socioeconomic status of society are the other reasons for possible treatment interruptions because as soon as the patient improves, they move out to earn their wages to run the family with the unavoidable default from the treatment

    Effects of Conservation Tillage and Nutrient Management Practices on Soil Fertility and Productivity of Rice (Oryza sativa L.)–Rice System in North Eastern Region of India

    No full text
    Over centuries and even today, traditional farming practices are well performed without any ecological degradation. However, management practice such as conservative tillage combined with nutrient and residue could increase the crop production as well as soil fertility. A three-year replicated study was conducted to assess the effects of agronomic modification of traditional farming practices on productivity and sustainability of rice (wet season)–rice (dry season) system (RRS). The replacement of farmers practice (T2) with conservation effective tillage (no-till (NT)) and integrated nutrient management (INM) practice along with 30% residue retention (T5) enhanced the straw, root and biomass yield of both wet season rice (WR), dry season rice (DR) and system as a whole over T2. Treatment T5 recorded significantly lower soil bulk density (ρb) and higher pH than the T2 after three years of the experiment. Further, treatment T5 increased total soil organic carbon (2.8%), total soil organic carbon stock (2.8%), carbon sequestration rate (336.5 kg ha−1 year−1), cumulative carbon stock (142.9%) and carbon retention efficiency (141.0%) over T2 of 0–20 cm depth after three year. The soil microbial biomass carbon concentration was significantly the highest under T5. Similarly, the dehydrogenase activity was the maximum under T5. Adoption of conservation tillage and nutrient management practice involving NT and INM along with residue retention can enhance the system productivity, and C and N sequestration in paddy soils is thereby contributing to the sustainability of the RRS

    Development of sub-tropically adapted diverse provitamin-A rich maize inbreds through marker-assisted pedigree selection, their characterization and utilization in hybrid breeding.

    No full text
    Malnutrition has emerged as one of the major health problems worldwide. Traditional yellow maize has low provitamin-A (proA) content and its genetic base in proA biofortification breeding program of subtropics is extremely narrow. To diversify the proA rich germplasm, 10 elite low proA inbreds were crossed with a proA rich donor (HP702-22) having mutant crtRB1 gene. The F2 populations derived from these crosses were genotyped using InDel marker specific to crtRB1. Severe marker segregation distortion was observed. Seventeen crtRB1 inbreds developed through marker-assisted pedigree breeding and seven inbreds generated using marker-assisted backcross breeding were characterized using 77 SSRs. Wide variation in gene diversity (0.08 to 0.79) and dissimilarity coefficient (0.28 to 0.84) was observed. The inbreds were grouped into three major clusters depicting the existing genetic diversity. The crtRB1-based inbreds possessed high β-carotene (BC: 8.72μg/g), β-cryptoxanthin (BCX: 4.58μg/g) and proA (11.01μg/g), while it was 2.35μg/g, 1.24μg/g and 2.97μg/g in checks, respectively. Based on their genetic relationships, 15 newly developed crtRB1-based inbreds were crossed with five testers (having crtRB1 gene) using line × tester mating design. 75 experimental hybrids with crtRB1 gene were evaluated over three locations. These experimental hybrids possessed higher BC (8.02μg/g), BCX (4.69μg/g), proA (10.37μg/g) compared to traditional hybrids used as check (BC: 2.36 μg/g, BCX: 1.53μg/g, proA: 3.13μg/g). Environment and genotypes × environment interaction had minor effects on proA content. Both additive and dominance gene action were significant for proA. The mean proportion of proA to total carotenoids (TC) was 44% among crtRB1-based hybrids, while 11% in traditional hybrids. BC was found to be positively correlated with BCX (r = 0.68) and proA (r = 0.98). However, no correlation was observed between proA and grain yield. Several hybrids with >10.0 t/ha grain yield with proA content >10.0 μg/g were identified. This is the first comprehensive study on development of diverse proA rich maize hybrids through marker-assisted pedigree breeding approach. The findings provides sustainable and cost-effective solution to alleviate vitamin-A deficiency

    Not Available

    No full text
    Not AvailableMalnutrition has emerged as one of the major health problems worldwide. Traditional yellow maize has low provitamin-A (proA) content and its genetic base in proA biofortification breeding program of subtropics is extremely narrow. To diversify the proA rich germplasm, 10 elite low proA inbreds were crossed with a proA rich donor (HP702-22) having mutant crtRB1 gene. The F2 populations derived from these crosses were genotyped using InDel marker specific to crtRB1. Severe marker segregation distortion was observed. Seventeen crtRB1 inbreds developed through marker-assisted pedigree breeding and seven inbreds generated using marker-assisted backcross breeding were characterized using 77 SSRs. Wide variation in gene diversity (0.08 to 0.79) and dissimilarity coefficient (0.28 to 0.84) was observed. The inbreds were grouped into three major clusters depicting the existing genetic diversity. The crtRB1-based inbreds possessed high β-carotene (BC: 8.72μg/g), β-cryptox- anthin (BCX: 4.58μg/g) and proA (11.01μg/g), while it was 2.35μg/g, 1.24μg/g and 2.97μg/g in checks, respectively. Based on their genetic relationships, 15 newly developed crtRB1- based inbreds were crossed with five testers (having crtRB1 gene) using line × tester mating design. 75 experimental hybrids with crtRB1 gene were evaluated over three locations. These experimental hybrids possessed higher BC (8.02μg/g), BCX (4.69μg/g), proA (10.37μg/g) compared to traditional hybrids used as check (BC: 2.36 μg/g, BCX: 1.53μg/g, proA: 3.13μg/g). Environment and genotypes × environment interaction had minor effects on proA content. Both additive and dominance gene action were significant for proA.Not Availabl
    corecore