565 research outputs found

    Electron-Phonon mechanism for Superconductivity in Na0.35_{0.35}CoO2_2: Valence-Band Suhl-Kondo effect Driven by Shear Phonons

    Full text link
    To study the possible mechanism of superconductivity in Na0.35_{0.35}CoO2_2, we examine the interaction between all the relevant optical phonons (breathing and shear phonons) and t2g(a1g+eg)t_{2g}(a_{1g}+e_g')-electrons of Co-ions, and study the transition temperature for a s-wave superconductivity. The obtained TcT_{\rm c} is very low when the ege_g'-valence-bands are far below the Fermi level. However, TcT_{\rm c} is strongly enhanced when the top of the ege_g'-valence-bands is close to the Fermi level (say -50meV), thanks to interband hopping of Cooper pairs caused by shear phonons. This ``valence-band Suhl-Kondo mechanism'' due to shear phonons is significant to understand the superconductivity in Na0.35_{0.35}CoO2_2. By the same mechanism, the kink structure of the band-dispersion observed by ARPES, which indicates the strong mass-enhancement (m/m3m^\ast/m\sim3) due to optical phonons, is also explained.Comment: 5 pages, 4 figures; v2:Added references, published in J. Phys. Soc. Jp

    The Josephson current in Fe-based superconducting junctions: theory and experiment

    Get PDF
    We present theory of dc Josephson effect in contacts between Fe-based and spin-singlet ss-wave superconductors. The method is based on the calculation of temperature Green's function in the junction within the tight-binding model. We calculate the phase dependencies of the Josephson current for different orientations of the junction relative to the crystallographic axes of Fe-based superconductor. Further, we consider the dependence of the Josephson current on the thickness of an insulating layer and on temperature. Experimental data for PbIn/Ba1x_{1-x}Kx_{x}(FeAs)2_2 point-contact Josephson junctions are consistent with theoretical predictions for s±s_{\pm} symmetry of an order parameter in this material. The proposed method can be further applied to calculations of the dc Josephson current in contacts with other new unconventional multiorbital superconductors, such as Sr2RuO4Sr_2RuO_4 and superconducting topological insulator CuxBi2Se3Cu_xBi_2Se_3.Comment: 16 pages, 14 figure

    The prosegment catalyzes native folding of Plasmodium falciparum plasmepsin II

    Get PDF
    Plasmepsin II is a malarial pepsin-like aspartic protease produced as a zymogen containing an N-terminal prosegment domain that is removed during activation. Despite structural similarities between active plasmepsin II and pepsin, their prosegments adopt different conformations in the respective zymogens. In contrast to pepsinogen, the proplasmepsin II prosegment is 80 residues longer, contains a transmembrane region and is non-essential for recombinant expression in an active form, thus calling into question the prosegment's precise function. The present study examines the role of the prosegment in the folding mechanism of plasmepsin II. Both a shorter (residues 77–124) and a longer (residues 65–124) prosegment catalyze plasmepsin II folding at rates more than four orders of magnitude faster compared to folding without prosegment. Native plasmepsin II is kinetically trapped and requires the prosegment both to catalyze folding and to shift the folding equilibrium towards the native conformation. Thus, despite low sequence identity and distinct zymogen conformations, the folding landscapes of plasmepsin II and pepsin, both with and without prosegment, are qualitatively identical. These results imply a conserved and unusual feature of the pepsin-like protease topology that necessitates prosegment-assisted folding

    Orbital-Controlled Superconductivity in f-Electron Systems

    Full text link
    We propose a concept of superconductivity controlled by orbital degree of freedom taking CeMIn5 (M= Co, Rh, and Ir) as typical examples. A microscopic multiorbital model for CeMIn5 is analyzed by fluctuation exchange approximation. Even though the Fermi-surface structure is unchanged, the ground state is found to change significantly among paramagnetic, antiferromagnetic, and d-wave superconducting phases, depending on the dominant orbital component in the band near the Fermi energy. We show that our picture naturally explains the different low-temperature properties of CeMIn5 by carefully analyzing the crystalline electric field states.Comment: 5 pages, 4 figure

    Deformation of Electronic Structures Due to CoO6 Distortion and Phase Diagrams of NaxCoO2.yH2O

    Full text link
    Motivated by recently reported experimental phase diagrams, we study the effects of CoO6 distortion on the electronic structure in NaxCoO2.yH2O. We construct the multiband tight-binding model by employing the LDA result. Analyzing this model, we show the deformation of band dispersions and Fermi-surface topology as functions of CoO2-layer thickness. Considering these results together with previous theoretical ones, we propose a possible schematic phase diagram with three successive phases: the extended s-wave superconductivity (SC), the magnetic order, and the spin-triplet SC phases when the Co valence number s is +3.4. A phase diagram with only one phase of spin-triplet SC is also proposed for the s=+3.5 case.Comment: 4 pages, 5 figure

    Random Spin-orbit Coupling in Spin Triplet Superconductors: Stacking Faults in Sr_2RuO_4 and CePt_3Si

    Full text link
    The random spin-orbit coupling in multicomponent superconductors is investigated focusing on the non-centrosymmetric superconductor CePt_3Si and the spin triplet superconductor Sr_2RuO_4. We find novel manifestations of the random spin-orbit coupling in the multicomponent superconductors with directional disorders, such as stacking faults. The presence of stacking faults is indicated for the disordered phase of CePt_3Si and Sr_2RuO_4. It is shown that the d-vector of spin triplet superconductivity is locked to be d = k_y x - k_x y with the anisotropy \Delta T_c/T_c0 \sim \bar{\alpha}^2/T_c0 W_z, where \bar{\alpha}, T_c0, and W_z are the mean square root of random spin-orbit coupling, the transition temperature in the clean limit, and the kinetic energy along the c-axis, respectively. This anisotropy is much larger (smaller) than that in the clean bulk Sr_2RuO_4 (CePt_3Si). These results indicate that the helical pairing state d = k_y x - k_x y in the eutectic crystal Sr_2RuO_4-Sr_3Ru_2O_7 is stabilized in contrast to the chiral state d = (k_x \pm i k_y) z in the bulk Sr_2RuO_4. The unusual variation of T_c in CePt_3Si is resolved by taking into account the weak pair-breaking effect arising from the uniform and random spin-orbit couplings. These superconductors provide a basis for discussing recent topics on Majorana fermions and non-Abelian statistics.Comment: J. Phys. Soc. Jpn. 79 (2010) 08470

    d-Wave Spin Density Wave phase in the Attractive Hubbard Model with Spin Polarization

    Full text link
    We investigate the possibility of unconventional spin density wave (SDW) in the attractive Hubbard model with finite spin polarization. We show that pairing and density fluctuations induce the transverse d-wave SDW near the half-filling. This novel SDW is related to the d-wave superfluidity induced by antiferromagnetic spin fluctuations, in the sense that they are connected with each other through Shiba's attraction-repulsion transformation. Our results predict the d-wave SDW in real systems, such as cold Fermi atom gases with population imbalance and compounds involving valence skipper elements

    Symmetry and Topology in Superconductors - Odd-frequency pairing and edge states -

    Full text link
    Superconductivity is a phenomenon where the macroscopic quantum coherence appears due to the pairing of electrons. This offers a fascinating arena to study the physics of broken gauge symmetry. However, the important symmetries in superconductors are not only the gauge invariance. Especially, the symmetry properties of the pairing, i.e., the parity and spin-singlet/spin-triplet, determine the physical properties of the superconducting state. Recently it has been recognized that there is the important third symmetry of the pair amplitude, i.e., even or odd parity with respect to the frequency. The conventional uniform superconducting states correspond to the even-frequency pairing, but the recent finding is that the odd-frequency pair amplitude arises in the spatially non-uniform situation quite ubiquitously. Especially, this is the case in the Andreev bound state (ABS) appearing at the surface/interface of the sample. The other important recent development is on the nontrivial topological aspects of superconductors. As the band insulators are classified by topological indices into (i) conventional insulator, (ii) quantum Hall insulator, and (iii) topological insulator, also are the gapped superconductors. The influence of the nontrivial topology of the bulk states appears as the edge or surface of the sample. In the superconductors, this leads to the formation of zero energy ABS (ZEABS). Therefore, the ABSs of the superconductors are the place where the symmetry and topology meet each other which offer the stage of rich physics. In this review, we discuss the physics of ABS from the viewpoint of the odd-frequency pairing, the topological bulk-edge correspondence, and the interplay of these two issues. It is described how the symmetry of the pairing and topological indices determines the absence/presence of the ZEABS, its energy dispersion, and properties as the Majorana fermions.Comment: 91 pages, 38 figures, Review article, references adde
    corecore