The random spin-orbit coupling in multicomponent superconductors is
investigated focusing on the non-centrosymmetric superconductor CePt_3Si and
the spin triplet superconductor Sr_2RuO_4. We find novel manifestations of the
random spin-orbit coupling in the multicomponent superconductors with
directional disorders, such as stacking faults. The presence of stacking faults
is indicated for the disordered phase of CePt_3Si and Sr_2RuO_4. It is shown
that the d-vector of spin triplet superconductivity is locked to be d = k_y x -
k_x y with the anisotropy \Delta T_c/T_c0 \sim \bar{\alpha}^2/T_c0 W_z, where
\bar{\alpha}, T_c0, and W_z are the mean square root of random spin-orbit
coupling, the transition temperature in the clean limit, and the kinetic energy
along the c-axis, respectively. This anisotropy is much larger (smaller) than
that in the clean bulk Sr_2RuO_4 (CePt_3Si). These results indicate that the
helical pairing state d = k_y x - k_x y in the eutectic crystal
Sr_2RuO_4-Sr_3Ru_2O_7 is stabilized in contrast to the chiral state d = (k_x
\pm i k_y) z in the bulk Sr_2RuO_4. The unusual variation of T_c in CePt_3Si is
resolved by taking into account the weak pair-breaking effect arising from the
uniform and random spin-orbit couplings. These superconductors provide a basis
for discussing recent topics on Majorana fermions and non-Abelian statistics.Comment: J. Phys. Soc. Jpn. 79 (2010) 08470