294 research outputs found

    Hemotropic mycoplasmas in little brown bats (Myotis lucifugus).

    Get PDF
    BackgroundHemotropic mycoplasmas are epicellular erythrocytic bacteria that can cause infectious anemia in some mammalian species. Worldwide, hemotropic mycoplasmas are emerging or re-emerging zoonotic pathogens potentially causing serious and significant health problems in wildlife. The objective of this study was to determine the molecular prevalence of hemotropic Mycoplasma species in little brown bats (Myotis lucifugus) with and without Pseudogymnoascus (Geomyces) destrucans, the causative agent of white nose syndrome (WNS) that causes significant mortality events in bats.MethodsIn order to establish the prevalence of hemotropic Mycoplasma species in a population of 68 little brown bats (Myotis lucifugus) with (n = 53) and without (n = 15) white-nose syndrome (WNS), PCR was performed targeting the 16S rRNA gene.ResultsThe overall prevalence of hemotropic Mycoplasmas in bats was 47%, with similar (p = 0.5725) prevalence between bats with WNS (49%) and without WNS (40%). 16S rDNA sequence analysis (~1,200 bp) supports the presence of a novel hemotropic Mycoplasma species with 91.75% sequence homology with Mycoplasma haemomuris. No differences were found in gene sequences generated from WNS and non-WNS animals.ConclusionsGene sequences generated from WNS and non-WNS animals suggest that little brown bats could serve as a natural reservoir for this potentially novel Mycoplasma species. Currently, there is minimal information about the prevalence, host-specificity, or the route of transmission of hemotropic Mycoplasma spp. among bats. Finally, the potential role of hemotropic Mycoplasma spp. as co-factors in the development of disease manifestations in bats, including WNS in Myotis lucifugus, remains to be elucidated

    SCWDS Briefs: Volume 27, Number 2 (July 2011)

    Get PDF
    Guilty Deer Breeder Fined $1,500,000 EHDV-7 Research at SCWDS Jack Crockford Gary Doster Retires, Again Time to Move On Recent SCWDS Publications Availabl

    SCWDS Briefs: Volume 24, Number 2 (July 2008)

    Get PDF
    Table of Contents: Brucellosis in MT and WY Lead Fragments in Donated Venison The Threat of Plague Recent Cases of Plague in the U.S. Raccoon Roundworm – Public Health Update 2008 Avian Pox in a Nestling Bald Eagle A Note to Our Readers Recent SCWDS Publications Availabl

    SCWDS Briefs: Volume 26, Number 3 (October 2010)

    Get PDF
    White Nose Syndrome Response Plan Newcastle Disease in Cormorants Baylisascaris in Florida Raccoons EHDV-6 Surveillance The Hunchback Mite North American Model of Wildlife Conservation New SCWDS Members AFWA Resolution on Lead International Feral Swine/Wild Boar Conference

    Molecular Typing of Trypanosoma cruzi Isolates, United States

    Get PDF
    Studies have characterized Trypanosoma cruzi from parasite-endemic regions. With new human cases, increasing numbers of veterinary cases, and influx of potentially infected immigrants, understanding the ecology of this organism in the United States is imperative. We used a classic typing scheme to determine the lineage of 107 isolates from various hosts

    Ticks and Tick-Borne Pathogens in Domestic Animals, Wild Pigs, and Off-Host Environmental Sampling in Guam, USA

    Get PDF
    Background: Guam, a United States of America (USA) island territory in the Pacific Ocean, is known to have large populations of ticks; however, it is unclear what the risk is to wildlife and humans living on the island. Dog (Canis familiaris), cat (Felis catus), and wild pig (Sus scrofa) sentinels were examined for ticks, and environmental sampling was conducted to determine the ticks present in Guam and the prevalence of tick-borne pathogens in hosts. Methods and Results: From March 2019-November 2020, ticks were collected from environmental sampling, dogs, cats, and wild pigs. Blood samples were also taken from a subset of animals. A total of 99 ticks were collected from 27 environmental samples and all were Rhipicephalus sanguineus, the brown dog tick. Most ticks were collected during the dry season with an overall sampling success rate of 63% (95% CI: 42.4–80.6). 6,614 dogs were examined, and 12.6% (95% CI: 11.8–13.4) were infested with at least one tick. One thousand one hundred twelve cats were examined, and six (0.54%; 95% CI: 0.20–1.1) were found with ticks. Sixty-four wild pigs were examined and 17.2% (95% CI: 9.5–27.8) had ticks. In total, 1,956 ticks were collected and 97.4% of ticks were R. sanguineus. A subset of R. sanguineus were determined to be the tropical lineage. The other tick species found were Rhipicephalus microplus (0.77%), Amblyomma breviscutatum (0.77 %), and a Haemaphysalis sp. (0.51%). Blood samples from 136 dogs, four cats, and 64 wild pigs were tested using polymerase chain reaction (PCR) and DNA sequencing methods. Five different tick-borne pathogens with the following prevalences were found in dogs: Anaplasma phagocytophilum 5.9% (95% CI: 2.6–11.3); Anaplasma platys 19.1% (95% CI: 12.9–26.7); Babesia canis vogeli 8.8% (95% CI: 4.6–14.9); Ehrlichia canis 12.5% (95% CI: 7.5–19.3); Hepatozoon canis 14.7% (95% CI: 9.2–28.8). E. canis was detected in one cat, and no tick-borne pathogens were detected in wild pigs. Overall, 43.4% (95% CI: 34.9–52.1) of dogs had at least one tick-borne pathogen. Serological testing for antibodies against Ehrlichia spp. and Anaplasma spp. showed prevalences of 14.7% (95% CI: 9.2–28.8) and 31.6% (95% CI: 23.9–40), respectively. Conclusion: Four different tick species were found in Guam to include a Haemaphysalis sp., which is a previously unreported genus for Guam. Dogs with ticks have a high prevalence of tick-borne pathogens which makes them useful sentinels

    The Phenology of Ticks and the Effects of Long-Term Prescribed Burning on Tick Population Dynamics in Southwestern Georgia and Northwestern Florida

    Get PDF
    Some tick populations have increased dramatically in the past several decades leading to an increase in the incidence and emergence of tick-borne diseases. Management strategies that can effectively reduce tick populations while better understanding regional tick phenology is needed. One promising management strategy is prescribed burning. However, the efficacy of prescribed burning as a mechanism for tick control is unclear because past studies have provided conflicting data, likely due to a failure of some studies to simulate operational management scenarios and/or account for other predictors of tick abundance. Therefore, our study was conducted to increase knowledge of tick population dynamics relative to long-term prescribed fire management. Furthermore, we targeted a region, southwestern Georgia and northwestern Florida (USA), in which little is known regarding tick dynamics so that basic phenology could be determined. Twenty-one plots with varying burn regimes (burned surrounded by burned [BB], burned surrounded by unburned [BUB], unburned surrounded by burned [UBB], and unburned surrounded by unburned [UBUB]) were sampled monthly for two years while simultaneously collecting data on variables that can affect tick abundance (e.g., host abundance, vegetation structure, and micro- and macro-climatic conditions). In total, 47,185 ticks were collected, of which, 99% were Amblyomma americanum, 0.7% were Ixodes scapularis, and fewer numbers of Amblyomma maculatum, Ixodes brunneus, and Dermacentor variabilis. Monthly seasonality trends were similar between 2010 and 2011. Long-term prescribed burning consistently and significantly reduced tick counts (overall and specifically for A. americanum and I. scapularis) regardless of the burn regimes and variables evaluated. Tick species composition varied according to burn regime with A. americanum dominating at UBUB, A. maculatum at BB, I. scapularis at UBB, and a more even composition at BUB. These data indicate that regular prescribed burning is an effective tool for reducing tick populations and ultimately may reduce risk of tick-borne disease

    A case of transplacental transmission of Theileria equi in a foal in Trinidad

    Get PDF
    Equine piroplasmosis due to Theileria equi and Babesia caballi is endemic in Trinidad. A case of equine piroplasmosis due to T. equi was diagnosed in a thoroughbred foal at 10 h post-partum. A high parasitaemia (63%) of piroplasms was observed in a Wright-Giemsa® stained thin blood smear from the foal. In addition, the 18S rRNA gene for Babesia/Theileria was amplified from DNA extracted from the blood of the foal and the mare. Amplified products were subjected to a reverse line blot hybridization assay (RLB), which confirmed the presence of T. equi DNA in the foal. The mare was negative by RLB but was positive for T. equi using a nested PCR and sequence analysis. In areas where equine piroplasmosis is endemic, severe jaundice in a post-partum foal may be easily misdiagnosed as neonatal isoerythrolysis. Foals with post-partum jaundice should be screened for equine piroplasmosis, which may be confirmed using molecular methods if available

    Distribution of \u3ci\u3eBaylisascaris procyonis\u3c/i\u3e in Raccoons (\u3ci\u3eProcyon lotor\u3c/i\u3e) in Florida, USA

    Get PDF
    Baylisascaris procyonis, or raccoon roundworm, is an intestinal nematode parasite of raccoons (Procyon lotor) that is important to public and wildlife health. Historically, the parasite was uncommon in the southeastern US; however, the range of B. procyonis has expanded to include Florida, US. From 2010 to 2016, we opportunistically sampled 1,030 raccoons statewide. The overall prevalence was 3.7% (95% confidence interval=2.5–4.8%) of sampled individuals, and infection intensity ranged from 1 to 48 (mean±standard deviation 9.9±4.0). We found raccoon roundworm in 9/56 (16%) counties sampled, and the percent positive ranged from 1.1% to 13.3% of specimens collected per county. Including previously published data, B. procyonis was detected in 11 Florida counties. We used logistic regression to estimate the contribution of raccoon demographic variables and the presence of the endoparasite Macracanthorhynchus ingens to B. procyonis detection in Florida. Following the model selection process we found housing density, M. ingens presence, and urbanicity to be predictive of raccoon roundworm presence. We also found substantial among-county variation. Raccoon sex and age were not useful predictors. Public health officials, wildlife rehabilitators, wildlife managers, and others should consider any Florida raccoon to be potentially infected with B. procyonis, particularly in areas where housing density is high
    corecore