6 research outputs found

    ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ качСства ΠΌΠ΅Ρ‡Π΅Π½Ρ‹Ρ… FITC Π±Π΅Π»ΠΊΠΎΠ² для ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ‚ΠΎΠΌΠ½Ρ‹Ρ… исслСдований ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ капиллярного SDS гСль-элСктрофорСза ΠΈ SPR биосСнсором

    Get PDF
    The technology of dye-labeled proteins has many fields of application, especially in interactomics. The aim of this work was to adapt protocol of conjugation of low molecular weight (12 – 15 kDΠ°) heme-containing proteins with fluorescein isothiocyanate, isomer I, (FITC) for subsequent protein-protein interaction studies. We have monitored the quality of FITC-labeling of the target protein and comparative assessment of its binding capacity. Using the cytochrome C (Mw 12 kDΠ°) as an example, it has been shown that using the three step method approach including conventional spectrophotometry, capillary gel electrophoresis and SPR analysis it is possible to assess: (i) the capability of the FITC-labeled target protein to interact with its protein partner and protein material from tissue lysates, (ii) the fact of dye conjugation with the protein, and (iii) the quality of purification for final protein preparation from unreacted free dye moleculesВСхнология ΠΌΠ΅Ρ‡Π΅Π½Ρ‹Ρ… краситСлСм Π±Π΅Π»ΠΊΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΡ‡Π΅Π½ΡŒ ΠΌΠ½ΠΎΠ³ΠΎ областСй использования, Π² Ρ‚ΠΎΠΌ числС ΠΈ для ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ‚ΠΎΠΌΠ½Ρ‹Ρ… исслСдований. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»Π° ΠΎΡ†Π΅Π½ΠΊΠ° примСнимости ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° мСчСния Π±Π΅Π»ΠΊΠΎΠ² флуорСсцСин ΠΈΠ·ΠΎΡ‚ΠΈΠΎΡ†ΠΈΠΎΠ½Π°Ρ‚ΠΎΠΌ (ΠΈΠ·ΠΎΠΌΠ΅Ρ€ I, (FITC)) для Π±Π΅Π»ΠΊΠΎΠ² с нСбольшой молСкулярной массой (12 –15 ΠΊΠ”Π°) ΠΏΡƒΡ‚Π΅ΠΌ ΠΈΡ… ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎΠΉ ΠΊΠΎΠ½ΡŠΡŽΠ³Π°Ρ†ΠΈΠΈ с FITC, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ качСства Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΌΠ΅Ρ‚ΠΊΠΈ Π² Π±Π΅Π»ΠΎΠΊ ΠΈ ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° Π΅Π³ΠΎ способности ΠΊ Π±Π΅Π»ΠΎΠΊ-Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΌ взаимодСйствиям. На ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠ° с (12 ΠΊΠ”Π°) Π±Ρ‹Π»ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ использованиС ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎΠΉ спСктрофотомСтрии, капиллярного гСль-элСктрофорСза ΠΈ SPR-Π°Π½Π°Π»ΠΈΠ·Π° позволяСт ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄Ρ‹ ΠΎ: Π°) сохранСнии способности ΠΌΠ΅Ρ‡Π΅Π½ΠΎΠ³ΠΎ Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ-ΠΏΠ°Ρ€Ρ‚Π½Ρ‘Ρ€Π°ΠΌΠΈ ΠΈ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹ΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠΌ Ρ‚ΠΊΠ°Π½Π΅Π²Ρ‹Ρ… Π»ΠΈΠ·Π°Ρ‚ΠΎΠ²; Π±) Ρ„Π°ΠΊΡ‚Π΅ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ ΠΌΠ΅Ρ‚ΠΊΠΈ Π² Π±Π΅Π»ΠΎΠΊ; Π²) качСствС очистки Ρ„ΠΈΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ΠΎΡ‚ Π½Π΅ ΠΏΡ€ΠΎΡ€Π΅Π°Π³ΠΈΡ€ΠΎΠ²Π°Π²ΡˆΠΈΡ… с Π½ΠΈΠΌ свободных ΠΌΠΎΠ»Π΅ΠΊΡƒΠ» краситСля

    Π’Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ скрининг с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ оптичСского SPR-биосСнсора низкомолСкулярных соСдинСний Π½Π° взаимодСйствиС с CYP51 Candida krusei

    Get PDF
    The opportunistic fungus Candida krusei is the causative agent of nosocomial infections characterized by high mortality and development of resistance to drugs of the azole class. Therefore, develjoment of non-azole antifungal agents against resistant fungal strains is extremly important. Lanosterol 14-alpha demethylase (CYP51) is a well-known antifungal target. The optical SPR biosensor is a universal tool for screening studies in search of new drug prototypes. This paper presents the methodological aspects of high-hroughput SPR based screening of a library of low molecular weight compounds of natural origin for their interaction with C. krusei CYP51. It has been shown that when performing high-throughput screening, a researcher should pay special attention to the degree of a sensorgram curvature in the association phase. The described approaches to the analysis of high throughput screening data can be useful for researchers working with SPR biosensors from various manufacturers.Условно-ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹ΠΉ Π³Ρ€ΠΈΠ± Candida krusei (C. krusei) являСтся Π²ΠΎΠ·Π±ΡƒΠ΄ΠΈΡ‚Π΅Π»Π΅ΠΌ Π½ΠΎΠ·ΠΎΠΊΠΎΠΌΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ высокой Π»Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒΡŽ. Π’ послСднСС врСмя Π½Π°Π±Π»ΡŽΠ΄Π°Π΅Ρ‚ΡΡ тСндСнция ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΡŽ Π΄ΠΎΠ»ΠΈ ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π΄Ρ€ΠΎΠΆΠΆΠ΅Π²Ρ‹Ρ… Π³Ρ€ΠΈΠ±ΠΎΠ², рСзистСнтных ΠΊ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌ класса Π°Π·ΠΎΠ»ΠΎΠ². ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ поиск ΠΏΠΎΡ‚Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹Ρ… соСдинСний нСазольной ΠΏΡ€ΠΈΡ€ΠΎΠ΄Ρ‹ являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ исслСдований ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ Π½ΠΎΠ²Ρ‹Ρ… эффСктивных тСрапСвтичСских срСдств Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ рСзистСнтных ΡˆΡ‚Π°ΠΌΠΌΠΎΠ² Π³Ρ€ΠΈΠ±ΠΎΠ². ЛаностСрол 14-Π°Π»ΡŒΡ„Π° Π΄Π΅ΠΌΠ΅Ρ‚ΠΈΠ»Π°Π·Π° (CYP51) являСтся ΡˆΠΈΡ€ΠΎΠΊΠΎ извСстной мишСнью для ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ³Ρ€ΠΈΠ±ΠΊΠΎΠ²Ρ‹Ρ… срСдств. ΠžΠΏΡ‚ΠΈΡ‡Π΅ΡΠΊΠΈΠ΅ SPR-биосСнсоры ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΉ инструмСнт для скрининговых исслСдований, Ρ†Π΅Π»ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… являСтся поиск ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠΎΠ² Π½ΠΎΠ²Ρ‹Ρ… лСкарствСнных соСдинСний. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ прСдставлСны мСтодичСскиС аспСкты Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ скрининга Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ низкомолСкулярных соСдинСний ΠΏΡ€ΠΈΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ происхоТдСния, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π½Π° установлСниС ΠΈΡ… взаимодСйствия с CYP51 C. krusei с использованиСм SPR-биосСнсора. Как ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΡ€ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ скрининга особоС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ слСдуСт ΠΎΠ±Ρ€Π°Ρ‰Π°Ρ‚ΡŒ Π½Π° ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ выраТСнности Π½Π°ΠΊΠ»ΠΎΠ½Π° сСнсограммы взаимодСйствия Π² Ρ„Π°Π·Π΅ ассоциации. ΠžΠΏΠΈΡΠ°Π½Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρƒ Π΄Π°Π½Π½Ρ‹Ρ… Π²Ρ‹ΡΠΎΠΊΠΎΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ скрининга ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ исслСдоватСлям, Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‰ΠΈΠΌ с SPR-биосСнсорами Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ

    ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ Π»ΠΈΠ·Π°Ρ‚ΠΎΠ² для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ эффСктивности выдСлСния Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€ΠΎΠ² Ρ†Π΅Π»Π΅Π²Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π³Π΅Π½Π°ΠΌΠΈ 18-ΠΎΠΉ хромосомы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    Get PDF
    The aim of this work was to test modifications of the standard protocol for the sample preparation of cell/tissue lysate before performing the affinity isolation of lysate protein partners for the target protein (bait protein) which is covalently immobilized on an inert sorbent (e.g. BrCN-, SH-Sepharose 4B) or a carrier (e.g. paramagnetic nanoparticles). The series of our previous works on applying the approach to direct molecular fishing procedure with combination of affinity chromatography and LC-MS/MS analysis using a number of proteins, encoded by the genes of human chromosome 18, have shown that there are at least two problems affecting the specificity and the effectiveness of this procedure. These include: (i) redundancy of the background proteins in the eluates from an affinity sorbent (carrier) due to isolation of multiprotein complexes β€œlabeled” with a direct protein partner which binds with a bait protein immobilized on the sorbent; (ii) low enrichment of the eluates with appropriate protein partners due to the fact that some direct protein partners in the lysate exist in stable β€œwild type” complexes with the bait protein itself. This means that latter group of protein partners will not be sufficiently isolated from lysate. Therefore, in order to increase the specificity and efficiency of affinity isolation of protein partners for the bait protein, we modified the standard protocol of lysate preparation and the preliminary step on dissociation of lysate protein complexes was added. Several model experiments for the choice of regeneration solution, assessment of their efficiency in the dissociation of lysate protein complexes as well as the stability and binding capacity of proteins were performed under the control of surface plasmon resonance (SPR) biosensor Biacore 3000 using HepG2 cell lysate. It was shown that acid treatment and incubation of the cell lysate for one min on ice (final lysate dilution 20 times) and subsequent neutralization (pH shift from 2.0 to 7.4) resulted in maximal dissociation of the lysate protein complexes without significant negative effects on the protein-protein interactions tested.ЦСлью Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ тСстированиС ΠΌΠΎΠ΄ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ стандартного ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Π° ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ/ Ρ‚ΠΊΠ°Π½Π΅Π²ΠΎΠ³ΠΎ Π»ΠΈΠ·Π°Ρ‚Π° ΠΏΠ΅Ρ€Π΅Π΄ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹ Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ³ΠΎ выдСлСния ΠΈΠ· Π½Π΅Π³ΠΎ Π±Π΅Π»ΠΊΠΎΠ²-ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€ΠΎΠ² для Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° (Π±Π΅Π»ΠΊΠ°-Π½Π°ΠΆΠΈΠ²ΠΊΠΈ), ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π½Π° ΠΈΠ½Π΅Ρ€Ρ‚Π½ΠΎΠΌ сорбСнтС ΠΈΠ»ΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… наночастицах. Π¦ΠΈΠΊΠ» Π½Π°ΡˆΠΈΡ… ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰ΠΈΡ… Ρ€Π°Π±ΠΎΡ‚, посвящСнных прямому молСкулярному Ρ„ΠΈΡˆΠΈΠ½Π³Ρƒ с сопряТСниСм хроматографичСских ΠΈ масс-спСктромСтричСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… наночастиц c использованиСм ряда Π±Π΅Π»ΠΊΠΎΠ² 18-ΠΎΠΉ хромосомы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° ΠΈ Ρ‚Π°ΠΊΠΆΠ΅ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π±Π΅Π»ΠΊΠΎΠ² ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚, ΠΏΠΎ ΠΊΡ€Π°ΠΉΠ½Π΅ ΠΌΠ΅Ρ€Π΅, Π΄Π²Π΅ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹, Π²Π»ΠΈΡΡŽΡ‰ΠΈΠ΅ Π½Π° ΡΠΏΠ΅Ρ†ΠΈΡ„ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Ρ‹: (i) ΠΈΠ·Π±Ρ‹Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ Ρ„ΠΎΠ½ΠΎΠ²Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π² ΡΠ»ΡŽΠ°Ρ‚Π°Ρ… с Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ³ΠΎ сорбСнта, обусловлСнная Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠ±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… комплСксов, ΠΌΠ΅Ρ‡Π΅Π½Ρ‹Ρ… прямым ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€ΠΎΠΌ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ связываСтся с Ρ†Π΅Π»Π΅Π²Ρ‹ΠΌ Π±Π΅Π»ΠΊΠΎΠΌ Π½Π° сорбСнтС; (ii) низкая ΠΎΠ±ΠΎΠ³Π°Ρ‰Π΅Π½Π½ΠΎΡΡ‚ΡŒ ΡΠ»ΡŽΠ°Ρ‚ΠΎΠ² Π±Π΅Π»ΠΊΠ°ΠΌΠΈ-ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€Π°ΠΌΠΈ Ρ†Π΅Π»Π΅Π²ΠΎΠΉ Π³Ρ€ΡƒΠΏΠΏΡ‹ обусловлСнная Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚Π° ΠΈΠ»ΠΈ иная Ρ‡Π°ΡΡ‚ΡŒ прямых Π±Π΅Π»ΠΊΠΎΠ²-ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€ΠΎΠ² Π² Π»ΠΈΠ·Π°Ρ‚Π΅ находится Π² составС ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½Ρ‹Ρ… комплСксов Β«Π΄ΠΈΠΊΠΎΠ³ΠΎ Ρ‚ΠΈΠΏΠ°Β» с самим Π±Π΅Π»ΠΊΠΎΠΌ-Π½Π°ΠΆΠΈΠ²ΠΊΠΎΠΉ ΠΈ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π² достаточной стСпСни Π²Ρ‹Π΄Π΅Π»Π΅Π½Π° ΠΈΠ· Π»ΠΈΠ·Π°Ρ‚Π°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ спСцифичности ΠΈ эффСктивности Π°Ρ„Ρ„ΠΈΠ½Π½ΠΎΠ³ΠΎ выдСлСния Π±Π΅Π»ΠΊΠΎΠ²-ΠΏΠ°Ρ€Ρ‚Π½Π΅Ρ€ΠΎΠ² Ρ†Π΅Π»Π΅Π²ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π½Π°ΠΌΠΈ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π° модификация стандартной ΠΏΡ€ΠΎΠ±ΠΎΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ, Π·Π°ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‰Π°ΡΡΡ Π² ΠΏΡ€Π΅Π΄Π²Π°Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ диссоциации Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… комплСксов Π»ΠΈΠ·Π°Ρ‚Π°. ΠœΠΎΠ΄Π΅Π»ΡŒΠ½Ρ‹Π΅ экспСримСнты ΠΏΠΎ Π²Ρ‹Π±ΠΎΡ€Ρƒ Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ раствора, ΠΎΡ†Π΅Π½ΠΊΠ΅ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ способности Π±Π΅Π»ΠΊΠΎΠ² ΠΏΡ€ΠΈ Π΅Π³ΠΎ воздСйствии, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΎΡ†Π΅Π½ΠΊΠ° эффСктивности диссоциации комплСксов Π² Π»ΠΈΠ·Π°Ρ‚Π΅ Π±Ρ‹Π»ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½Ρ‹ ΠΏΠΎΠ΄ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ оптичСского биосСнсора Biacore 3000 (Β«GE HealthcareΒ», БША) с использованиСм Π»ΠΈΠ·Π°Ρ‚Π° ΠΊΠ»Π΅Ρ‚ΠΎΡ‡Π½ΠΎΠΉ ΠΊΡƒΠ»ΡŒΡ‚ΡƒΡ€Ρ‹ Π³Π΅ΠΏΠ°Ρ‚ΠΎΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° (HepG2) ΠΈ Ρ€Π΅ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Π½Ρ‚Π½Ρ‹Ρ… ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π±Π΅Π»ΠΊΠΎΠ², ΠΊΠΎΠ΄ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Π³Π΅Π½Π°ΠΌΠΈ 18-ΠΎΠΉ хромосомы Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°, Показано, Ρ‡Ρ‚ΠΎ кислотная ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ€Π°Π·Π±Π°Π²Π»Π΅Π½Π½ΠΎΠ³ΠΎ Π² 20 Ρ€Π°Π· Π»ΠΈΠ·Π°Ρ‚Π° с ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ экспозициСй Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1 ΠΌΠΈΠ½ Π½Π° Π»ΡŒΠ΄Ρƒ ΠΈ с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΉ Π½Π΅ΠΉΡ‚Ρ€Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠ΅ΠΉ (с рН 2.0 Π΄ΠΎ рН 7.4) ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠ»Π° ΠΊ максимальной диссоциации Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… комплСксов Π»ΠΈΠ·Π°Ρ‚Π°, Π½Π΅ оказывая сущСствСнного Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ влияния Π½Π° тСстируСмыС Π±Π΅Π»ΠΎΠΊ- Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Π΅ взаимодСйствия

    ΠŸΡ€ΠΎΡ‚Π΅ΠΎΠ»ΠΈΠΏΠΎΡΠΎΠΌΡ‹ ΠΊΠ°ΠΊ способ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² для SPR-Π°Π½Π°Π»ΠΈΠ·Π° Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ взаимодСйствия CYP3A4 ΠΈ CYB5A Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ°

    Get PDF
    Microsomal systems of human cytochrome P450 consist of three components, which are membrane proteins: cytochrome P450 hemoprotein (CYP), NADPH-dependent cytochrome P450 reductase (CPR), and a small regulatory heme-containing protein cytochrome bβ‚… (CYB5A). In the study of the cytochrome P450 system functioning the study of intermolecular interactions both with partner proteins and with possible drug prototypes is of great importance. Surface plasmon resonance (SPR) is a powerful and reliable tool for studying intermolecular interactions. However, there is a problem of immobilization of membrane proteins on the optical chip of the SPR biosensor. It is important to immobilize such proteins in native conditions with respect to the correct orientation of the protein globule to the surface of sensor. Previously, we have developed and described a method involving direct native immobilization of membrane proteins into a planar bilayer lipid membrane on the surface of a biosensor chip. At the same time, one of the commonly used approaches to working with membrane proteins using various methods is the construction of proteoliposomes containing membrane proteins. In this work, using CYP3A4 and CYB5A as protein partners, we evaluated two approaches to the creation of proteoliposomes: incorporation of a membrane protein into liposomes saturated with detergents and incorporation of a membrane protein into the forming proteoliposomes by the mechanism of micellar coalescence. The interaction of CYP3A4 with proteoliposomes obtained by incorporating CYB5A into detergent-saturated liposomes was shown. On the contrary, interaction between CYP3A4 and proteoliposomes containing CYB5A, obtained by the method of micellar coalescence, was not detected. Thus, it was shown that the incorporation of the membrane protein into liposomes saturated with a detergent was a more preferable method for working with an SPR biosensor as compared to the method of proteoliposomes formation by micellar coalescence. Detailed protocols for the creation of proteoliposomes and SPR-analysis can be useful to a wide range of researchers.ΠœΠΈΠΊΡ€ΠΎΡΠΎΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ систСмы Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠΎΠ² P450 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° состоят ΠΈΠ· Ρ‚Ρ€Ρ‘Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ², ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ: Π³Π΅ΠΌΠΎΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½Π° Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠ° P450 (CYP), NADPH-зависимой Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌ Π 450 Ρ€Π΅Π΄ΡƒΠΊΡ‚Π°Π·Ρ‹ (CPR) ΠΈ нСбольшого рСгуляторного Π³Π΅ΠΌ-содСрТащСго Π±Π΅Π»ΠΊΠ° Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠ° b₅ (CYB5A). Π’Π°ΠΆΠ½Ρ‹ΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π² ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ систСмы Ρ†ΠΈΡ‚ΠΎΡ…Ρ€ΠΎΠΌΠΎΠ² Π 450 являСтся исслСдованиС мСТмолСкулярных взаимодСйствий ΠΊΠ°ΠΊ с Π±Π΅Π»ΠΊΠ°ΠΌΠΈ-ΠΏΠ°Ρ€Ρ‚Π½Ρ‘Ρ€Π°ΠΌΠΈ, Ρ‚Π°ΠΊ ΠΈ с Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠ°ΠΌΠΈ лСкарств. Одним ΠΈΠ· ΠΏΠ΅Ρ€Π΅Π΄ΠΎΠ²Ρ‹Ρ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² ΠΊ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΡŽ мСТмолСкулярных взаимодСйствий являСтся использованиС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° повСрхностного ΠΏΠ»Π°Π·ΠΌΠΎΠ½Π½ΠΎΠ³ΠΎ рСзонанса (SPR). ΠŸΡ€ΠΈ этом Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π½Π° оптичСский Ρ‡ΠΈΠΏ SPR-биосСнсора. Для модСлирования Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… условий Π²Π°ΠΆΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ соблюдСниС ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΠΉ ΠΎΡ€ΠΈΠ΅Π½Ρ‚Π°Ρ†ΠΈΠΈ Π±Π΅Π»ΠΊΠΎΠ²ΠΎΠΉ Π³Π»ΠΎΠ±ΡƒΠ»Ρ‹ Π² пространствС. Π Π°Π½Π΅Π΅ Π½Π°ΠΌΠΈ Π±Ρ‹Π» Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄, ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°ΡŽΡ‰ΠΈΠΉ ΠΏΡ€ΡΠΌΡƒΡŽ ΠΈΠΌΠΌΠΎΠ±ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΡŽ Π½Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ² Π² ΠΏΠ»Π°Π½Π°Ρ€Π½ΡƒΡŽ Π±ΠΈΡΠ»ΠΎΠΉΠ½ΡƒΡŽ Π»ΠΈΠΏΠΈΠ΄Π½ΡƒΡŽ ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Ρƒ Π½Π° повСрхности Ρ‡ΠΈΠΏΠ° биосСнсора. Π”Ρ€ΡƒΠ³ΠΈΠΌ ΡˆΠΈΡ€ΠΎΠΊΠΎ распространённым ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠΌ для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹ΠΌΠΈ Π±Π΅Π»ΠΊΠ°ΠΌΠΈ являСтся конструированиС протСолипосом, содСрТащих ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Π΅ Π±Π΅Π»ΠΊΠΈ. Π’ Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Π΅ Π½Π°ΠΌΠΈ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π±Π΅Π»ΠΊΠΎΠ²Ρ‹Ρ… ΠΏΠ°Ρ€Ρ‚Π½Ρ‘Ρ€ΠΎΠ² CYP3A4 ΠΈ CYB5A Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ сравнСниС Π΄Π²ΡƒΡ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΎΠ² создания протСолипосом для SPR-Π°Π½Π°Π»ΠΈΠ·Π° мСТмолСкулярных взаимодСйствий ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½Ρ‹Ρ… Π±Π΅Π»ΠΊΠΎΠ²: встраиваниС ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π² липосомы, насыщСнныС Π΄Π΅Ρ‚Π΅Ρ€Π³Π΅Π½Ρ‚ΠΎΠΌ, ΠΈ встраиваниС ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π² Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΠ΅ΡΡ протСолипосомы ΠΏΠΎ ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡƒ мицСллярной коалСсцСнции. SPR-Π°Π½Π°Π»ΠΈΠ· ΠΏΠΎΠΊΠ°Π·Π°Π» взаимодСйствиС CYP3A4 с протСолипосомами, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ встраивания CYB5A Π² липосомы, насыщСнныС Π΄Π΅Ρ‚Π΅Ρ€Π³Π΅Π½Ρ‚ΠΎΠΌ. Π€Π°ΠΊΡ‚ взаимодСйствия ΠΌΠ΅ΠΆΠ΄Ρƒ CYP3A4 ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ мицСллярной коалСсцСнции протСолипосомами, содСрТащими CYB5A, Π·Π°Ρ„ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ ΡƒΠ΄Π°Π»ΠΎΡΡŒ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ встраиваниС ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ Π±Π΅Π»ΠΊΠ° Π² липосомы, насыщСнныС Π΄Π΅Ρ‚Π΅Ρ€Π³Π΅Π½Ρ‚ΠΎΠΌ, являСтся Π±ΠΎΠ»Π΅Π΅ ΠΏΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ для Ρ€Π°Π±ΠΎΡ‚Ρ‹ с SPR-биосСнсором ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ формирования протСолипосом мицСллярной коалСсцСнциСй. ΠŸΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Π΅ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Ρ‹Π΅ ΠΏΡ€ΠΎΡ‚ΠΎΠΊΠΎΠ»Ρ‹ создания протСолипосом ΠΈ SPR-Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹ ΡˆΠΈΡ€ΠΎΠΊΠΎΠΌΡƒ ΠΊΡ€ΡƒΠ³Ρƒ исслСдоватСлСй
    corecore