15 research outputs found

    Dynamic Detection of Topological Information from Grid-Based Generalized Voronoi Diagrams

    Get PDF
    In the context of robotics, the grid-based Generalized Voronoi Diagrams (GVDs) are widely used by mobile robots to represent their surrounding area. Current approaches for incrementally constructing GVDs mainly focus on providing metric skeletons of underlying grids, while the connectivity among GVD vertices and edges remains implicit, which makes high-level spatial reasoning tasks impractical. In this paper, we present an algorithm named Dynamic Topology Detector (DTD) for extracting a GVD with topological information from a grid map. Beyond the construction and reconstruction of a GVD on grids, DTD further extracts connectivity among the GVD edges and vertices. DTD also provides efficient repair mechanism to treat with local changes, making it work well in dynamic environments. Simulation tests in representative scenarios demonstrate that (1) compared with the static algorithms, DTD generally makes an order of magnitude improvement regarding computation times when working in dynamic environments; (2) with negligible extra computation, DTD detects topologies not computed by existing incremental algorithms. We also demonstrate the usefulness of the resulting topological information for high-level path planning tasks

    Formation Control of Robotic Swarm Using Bounded Artificial Forces

    Get PDF
    Formation control of multirobot systems has drawn significant attention in the recent years. This paper presents a potential field control algorithm, navigating a swarm of robots into a predefined 2D shape while avoiding intermember collisions. The algorithm applies in both stationary and moving targets formation. We define the bounded artificial forces in the form of exponential functions, so that the behavior of the swarm drove by the forces can be adjusted via selecting proper control parameters. The theoretical analysis of the swarm behavior proves the stability and convergence properties of the algorithm. We further make certain modifications upon the forces to improve the robustness of the swarm behavior in the presence of realistic implementation considerations. The considerations include obstacle avoidance, local minima, and deformation of the shape. Finally, detailed simulation results validate the efficiency of the proposed algorithm, and the direction of possible futrue work is discussed in the conclusions

    Incremental Construction of Generalized Voronoi Diagrams on Pointerless Quadtrees

    Get PDF
    In robotics, Generalized Voronoi Diagrams (GVDs) are widely used by mobile robots to represent the spatial topologies of their surrounding area. In this paper we consider the problem of constructing GVDs on discrete environments. Several algorithms that solve this problem exist in the literature, notably the Brushfire algorithm and its improved versions which possess local repair mechanism. However, when the area to be processed is very large or is of high resolution, the size of the metric matrices used by these algorithms to compute GVDs can be prohibitive. To address this issue, we propose an improvement on the current algorithms, using pointerless quadtrees in place of metric matrices to compute and maintain GVDs. Beyond the construction and reconstruction of a GVD, our algorithm further provides a method to approximate roadmaps in multiple granularities from the quadtree based GVD. Simulation tests in representative scenarios demonstrate that, compared with the current algorithms, our algorithm generally makes an order of magnitude improvement regarding memory cost when the area is larger than 210Ă—210. We also demonstrate the usefulness of the approximated roadmaps for coarse-to-fine pathfinding tasks

    A Semi-Markov Decision Model for Recognizing the Destination of a Maneuvering Agent in Real Time Strategy Games

    Get PDF
    Recognizing destinations of a maneuvering agent is important in real time strategy games. Because finding path in an uncertain environment is essentially a sequential decision problem, we can model the maneuvering process by the Markov decision process (MDP). However, the MDP does not define an action duration. In this paper, we propose a novel semi-Markov decision model (SMDM). In the SMDM, the destination is regarded as a hidden state, which affects selection of an action; the action is affiliated with a duration variable, which indicates whether the action is completed. We also exploit a Rao-Blackwellised particle filter (RBPF) for inference under the dynamic Bayesian network structure of the SMDM. In experiments, we simulate agents’ maneuvering in a combat field and employ agents’ traces to evaluate the performance of our method. The results show that the SMDM outperforms another extension of the MDP in terms of precision, recall, and F-measure. Destinations are recognized efficiently by our method no matter whether they are changed or not. Additionally, the RBPF infer destinations with smaller variance and less time than the SPF. The average failure rates of the RBPF are lower when the number of particles is not enough

    Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced Multi-Objective Evolutionary Algorithm

    No full text
    Due to the scarcity of conventional energy resources and the greenhouse effect, renewable energies have gained more attention. This paper proposes methods for multi-objective optimal design of hybrid renewable energy system (HRES) in both isolated-island and grid-connected modes. In each mode, the optimal design aims to find suitable configurations of photovoltaic (PV) panels, wind turbines, batteries and diesel generators in HRES such that the system cost and the fuel emission are minimized, and the system reliability/renewable ability (corresponding to different modes) is maximized. To effectively solve this multi-objective problem (MOP), the multi-objective evolutionary algorithm based on decomposition (MOEA/D) using localized penalty-based boundary intersection (LPBI) method is proposed. The algorithm denoted as MOEA/D-LPBI is demonstrated to outperform its competitors on the HRES model as well as a set of benchmarks. Moreover, it effectively obtains a good approximation of Pareto optimal HRES configurations. By further considering a decision maker’s preference, the most satisfied configuration of the HRES can be identified

    Learning Behavior Trees for Autonomous Agents with Hybrid Constraints Evolution

    No full text
    In modern training, entertainment and education applications, behavior trees (BTs) have already become a fantastic alternative to finite state machines (FSMs) in modeling and controlling autonomous agents. However, it is expensive and inefficient to create BTs for various task scenarios manually. Thus, the genetic programming (GP) approach has been devised to evolve BTs automatically but only received limited success. The standard GP approaches to evolve BTs fail to scale up and to provide good solutions, while GP approaches with domain-specific constraints can accelerate learning but need significant knowledge engineering effort. In this paper, we propose a modified approach, named evolving BTs with hybrid constraints (EBT-HC), to improve the evolution of BTs for autonomous agents. We first propose a novel idea of dynamic constraint based on frequent sub-trees mining, which can accelerate evolution by protecting preponderant behavior sub-trees from undesired crossover. Then we introduce the existing ‘static’ structural constraint into our dynamic constraint to form the evolving BTs with hybrid constraints. The static structure can constrain expected BT form to reduce the size of the search space, thus the hybrid constraints would lead more efficient learning and find better solutions without the loss of the domain-independence. Preliminary experiments, carried out on the Pac-Man game environment, show that the hybrid EBT-HC outperforms other approaches in facilitating the BT design by achieving better behavior performance within fewer generations. Moreover, the generated behavior models by EBT-HC are human readable and easy to be fine-tuned by domain experts

    Short-Term Load Interval Prediction Using a Deep Belief Network

    No full text
    In load predication, point-based forecasting methods have been widely applied. However, uncertainties arising in load predication bring significant challenges for such methods. This therefore drives the development of new methods amongst which interval predication is one of the most effective. In this study, a deep belief network-based lower–upper bound estimation (LUBE) approach is proposed, and a genetic algorithm is applied to reinforce the search ability of the LUBE method, instead of simulated an annealing algorithm. The approach is applied to the short-term load prediction on some realistic electricity load data. To demonstrate the effectiveness and efficiency of the proposed method, it is compared with three state-of-the-art methods. Experimental results show that the proposed approach can significantly improve the predication accuracy

    Modified Adversarial Hierarchical Task Network Planning in Real-Time Strategy Games

    No full text
    The application of artificial intelligence (AI) to real-time strategy (RTS) games includes considerable challenges due to the very large state spaces and branching factors, limited decision times, and dynamic adversarial environments involved. To address these challenges, hierarchical task network (HTN) planning has been extended to develop a method denoted as adversarial HTN (AHTN), and this method has achieved favorable performance. However, the HTN description employed cannot express complex relationships among tasks and accommodate the impacts of the environment on tasks. Moreover, AHTN cannot address task failures during plan execution. Therefore, this paper proposes a modified AHTN planning algorithm with failed task repair functionality denoted as AHTN-R. The algorithm extends the HTN description by introducing three additional elements: essential task, phase, and exit condition. If any task fails during plan execution, the AHTN-R algorithm identifies and terminates all affected tasks according to the extended HTN description, and applies a novel task repair strategy based on a prioritized listing of alternative plans to maintain the validity of the previous plan. In the planning process, AHTN-R generates the priorities of alternative plans by sorting all nodes of the game search tree according to their primary features. Finally, empirical results are presented based on a µRTS game, and the performance of AHTN-R is compared to that of AHTN and to the performances of other state-of-the-art search algorithms developed for RTS games

    Capacity Fast Prediction and Residual Useful Life Estimation of Valve Regulated Lead Acid Battery

    No full text
    The usable capacity of acid lead batteries is often used as the degradation feature for online RUL (residual useful life) estimation. In engineering applications, the “standard” fully discharging method for capacity measure is quite time-consuming and harmful for the high-capacity batteries. In this paper, a data-driven framework providing capacity fast prediction and RUL estimation for high-capacity VRLA (valve regulated lead acid) batteries is presented. These batteries are used as backup power sources on the ships. The relationship between fully discharging time and partially discharging voltage curve is established for usable capacity extrapolation. Based on the predicted capacity, the particle filtering approach is utilized to obtain battery RUL distribution. A case study is conducted with the experimental data of GFM-200 battery. Results confirm that our method not only reduces the prediction time greatly but also performs quite well in prediction accuracy of battery capacity and RUL

    Short-Term Load Forecasting Using a Novel Deep Learning Framework

    No full text
    Short-term load forecasting is the basis of power system operation and analysis. In recent years, the use of a deep belief network (DBN) for short-term load forecasting has become increasingly popular. In this study, a novel deep-learning framework based on a restricted Boltzmann machine (RBM) and an Elman neural network is presented. This novel framework is used for short-term load forecasting based on the historical power load data of a town in the UK. The obtained results are compared with an individual use of a DBN and Elman neural network. The experimental results demonstrate that our proposed model can significantly ameliorate the prediction accuracy
    corecore