
Research Article
Incremental Construction of Generalized Voronoi Diagrams on
Pointerless Quadtrees

Quanjun Yin, Long Qin, Xiaocheng Liu, and Yabing Zha

College of Information System and Management, National University of Defense Technology, Changsha, Hunan 410073, China

Correspondence should be addressed to Quanjun Yin; yin quanjun@163.com

Received 21 October 2013; Revised 5 January 2014; Accepted 6 January 2014; Published 26 February 2014

Academic Editor: Piermarco Cannarsa

Copyright © 2014 Quanjun Yin et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In robotics, Generalized Voronoi Diagrams (GVDs) are widely used by mobile robots to represent the spatial topologies of their
surrounding area. In this paper we consider the problem of constructing GVDs on discrete environments. Several algorithms
that solve this problem exist in the literature, notably the Brushfire algorithm and its improved versions which possess local repair
mechanism.However, when the area to be processed is very large or is of high resolution, the size of themetricmatrices used by these
algorithms to computeGVDs can be prohibitive. To address this issue, we propose an improvement on the current algorithms, using
pointerless quadtrees in place of metric matrices to compute and maintain GVDs. Beyond the construction and reconstruction
of a GVD, our algorithm further provides a method to approximate roadmaps in multiple granularities from the quadtree based
GVD. Simulation tests in representative scenarios demonstrate that, compared with the current algorithms, our algorithm generally
makes an order of magnitude improvement regarding memory cost when the area is larger than 210 × 210. We also demonstrate the
usefulness of the approximated roadmaps for coarse-to-fine pathfinding tasks.

1. Introduction

In robotics, constructing a sparse, adequate, and well-
organized space model of the working area is a key issue in
the successful design of amobile robot.With such an internal
description of the environment, most spatial reasoning tasks
(such as path planning, self-localization, and collision detec-
tion) become feasible.

Commonly used representations for representing the
environment include (but are not limited to) uniform [1] and
nonuniform grid maps [2], probabilistic roadmaps [3], way
point graph [4], and Generalized Voronoi Diagrams (GVDs)
that are built on continuous or discrete environments. In this
paper we focus on GVDs constructed on grids because of
the prevalence of grid-based environment representations in
mobile robot navigation [5]. GVD is defined as the set of
points in free space to which the two closest sites have the
same distance. Let 𝑆 denote a set of n sites (e.g., points, curves,
line segments, and polygons) in a plane𝐷. For each site𝑝 ∈ 𝑆,
the GVD region of 𝑝 is defined as

reg (𝑝) = {𝑐 | 𝑐 ∈ 𝐷, dis (𝑐, 𝑝) ≤ dis (𝑐, 𝑞) ∀𝑞 ∈ 𝑆 − {𝑝}}
(1)

referring to a set of points that keep 𝑝 as the nearest site than
the others. The boundary that divides two regions is named
as a GVD edge which can be denoted as

edge (𝑝, 𝑞) = {𝑐 | 𝑐 ∈ reg (𝑝) , 𝑐 ∈ reg (𝑝)} . (2)

Those points which are equidistant from at least three
sites are denoted as GVD vertices. As a consequence, a plane
can be represented as a partition and thus is called the
GVD of 𝑆. As an example, Figure 1 represents the GVD of
an indoor environment which first appeared in [6]. Due to
the prevalence of grid-based environment representations in
robotics, GVDs built on discrete environments are widely
used and outperform other representations in extracting
sparse but adequate environment skeletons [5, 7].

The advantages of employing grid-based GVDs are
twofold. Firstly, it can serve as a roadmap that significantly
reduces the complexity of search problems. Secondly, it
provides maximum clearance to the sites which are usually
considered as obstacles. Due to these advantages, research
on how to construct the GVDs on discrete environments has
drawn significant attention in recent years; among them the
Brushfire algorithm and its improved versions (i.e., Dynamic

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 456739, 14 pages
http://dx.doi.org/10.1155/2014/456739



2 Mathematical Problems in Engineering

0 50 100 150
0

20

40

60

80

100

120

140

Figure 1: The GVD of an indoor environment: red lines denote
the GVD edges, blue dots are GVD vertices, and black polygons
represent walls and furniture, that is, the GVD sites.

Brushfire [8] and a novel approach proposed by Lau et al. in
[9]) are the most representative ones.

Although these algorithms provide reduced search space,
they still suffer from memory complexity. These algorithms
must set aside several metric matrices to compute and
maintain GVD data; therefore the memory cost depends on
the resolution of the maps rather than the complexity of
the space configurations. For instance, when the size of the
working area enlarges from 2𝑁×2𝑁 to 2𝑁+1×2𝑁+1 (where𝑁 >
0), that is, the granularity gets finer or the side length doubles,
the memory cost will be quadrupled. In addition, because
these matrices are represented in single granularity, it is
difficult to providemobile robots a hierarchical data structure
for carrying out coarse-to-fine navigation tasks. Although
searching the finest solution is sufficient, approximating a
coarser but good enough path in one higher level can be a
better choice since it is time saving and is more flexible for
real-time applications.

Because the GVD regions normally have strong spatial
coherences, we conjecture that using quadtrees to compute
and maintain GVDs can help overcome the difficulties
encountered before. Based on the principle of recursive
decomposition of space, cells in the metric matrices with the
same value can be maximally represented as one leaf node
in the quadtree structure [10]; therefore significant memory
saving and amultilayered data structure can both be archived.

There are mainly two types of quadtree representations:
pointer-based [11] and pointerless [12, 13]. The pointer-
based quadtree is the most natural way to represent a
quadtree structure. However, for very complex spatial data,
the extra cost for storing pointers will exceed the amount
of available memory. Some researchers tried to address this

issue via employing a heuristic algorithm to find a “proper”
root, so the number of the leaf nodes can be reduced
[14]. However, choosing a “proper” root is unsuitable for
dynamic environment, since partial changes will frequently
relocate the root and thus lead a reconstruction of the whole
tree. Consequently, considerable attention is concentrated on
another quadtree representation method, that is, pointerless
quadtree representation. This kind of representation saves
more space because it does not maintain parent-to-child
pointers. Via defining each tree node as a unique index, they
can be maintained in a hash table through which efficient
random access can be ensured.

In this paper, we design an algorithm named pointerless
quadtree based GVD builder (PQ-GVD builder) which
intends to achieve the following goals.

(1) Constructing GVDs on discrete environments, for
example, occupancy maps.

(2) Possessing a local repair mechanism which makes
use of precomputed result to update local changes
efficiently.

(3) Maintaining a memory saving data structure to han-
dle large areas or areas of high resolution efficiently.

(4) Providing approximated roadmaps in multiple gran-
ularities with which a mobile robot can carry out
pathfinding tasks in a coarse-to-fine manner.

PQ-GVD builder employs a spatial hashing technique
to encode quadtree nodes, defining for each of them a
unique index. Therefore a quadtree can be mapped into a
hash table which provides random access to any arbitrary
node. Based on this encoding principle, we design PQ-
GVD builder to use pointerless quadtrees in place of metric
matrices to compute and maintain GVD data. Pointerless
quadtrees can be memory saving, since notable entries in a
matrix are merged into one leaf node if they have the same
value. Moreover, rather than the depth first search manner,
PQ-GVD builder traces backwards when an instant query
failed (i.e., the target node is included in a high-level leaf
node). This backtracking strategy is more efficient since it
starts from a location which is much closer to the target
node. PQ-GVDbuilder further provides a prudentialmethod
to approximate roadmaps in different granularities. These
roadmaps are very useful formobile robots to execute layered
navigation tasks. We compare our algorithm to existing
algorithms on several simulated scenarios. Our results show
that when the resolution of the underlying maps is larger
than 210 × 210, the resulting GVDs outperform its grid-
based counterparts in terms of less memory cost. As for the
case of smaller than 210 × 210, the number of nodes in the
quadtree is not significantly less than the number of cells in
the corresponding gridswhen representing the sameGVD, so
there is extra memory cost in quadtree based GVD. However,
because the GVD itself has a small size and does not take up
a lot of memory, the additional memory can be negligible.
We further demonstrate the usefulness of the approximated
roadmaps on coarse-to-fine pathfinding tasks.

The remainder of this paper is as follows: Section 2
discusses related techniques for GVD construction; Section 3



Mathematical Problems in Engineering 3

(a)

LowerRaise

(b)

Lower
Lower

(c) (d)

Figure 2: Distance map update between two configurations (a) and (d). Occupied cells are marked by black cells; brightness increases with
distance. The inserted site (blue) initiates a “lower” wavefront shown in the intermediate steps (b) and (c) that updates the distances in the
cells up to the point where a different obstacle is closer. The removed site (red outline) starts a “raise” wavefront (b) to clear the cells which
lost their closest obstacle.When it comes to a halt it initiates a “lower” wavefront (c) that recomputes the distances for the cleared cells (white)
on the basis of the remaining sites.

gives the details of the defined pointerless quadtrees;
Section 4 gives the improved GVD constructing algorithm;
Section 5 compares the algorithm to other algorithms and
tests the usefulness of the roadmaps when used to carry out
multilayer pathfinding tasks. This paper ends with conclu-
sions in Section 6.

2. Related Work

Existing algorithms for computing GVDs can be roughly
divided into two kinds which operate on continuous and
discrete space, respectively [15]. GVDs upon continuous
space are built as set of parametric lines or curves which
separate different sites [16, 17]. There are also local update
mechanisms for moving sites [18] or sites that have been
inserted or deleted [19]. Such analyticmethods, despite giving
more accurate and sparser representation, are not practical
for robots whose surrounding area is preferably modeled as
grids. Moreover, discretizing the continuous GVD to a grid
map does not work because (1) different GVD edges within
the same grid cell will be mixed; (2) edges that coincidently
lie between two grids can lead either two cell wide edges or
invalid detection. Based on the above reasons we focus on
GVDs which are computed in discrete space, that is, on grids.

As for discrete GVDs, some researchers prefer fast com-
putation using graphics hardware [20, 21]. However, this is
infeasible for (1) robots with limited hardware load in real
world scenarios and (2) computer generated agents perform-
ing spatial reasoning tasks in virtual reality. Therefore many
attentions concentrate on hardware-independent methods.
Some of the recent approaches to rebuild GVDs on grids are
based on the well-known Brushfire algorithm [22]. Brushfire
is based on D∗ for pathfinding; it processes a priority queue

open of the cells to propagate the change. The priority of
a cell in open (denoted as s) is determined by its newly
updated distance in dists and cells are popped with increasing
priorities. Sequentially new cells which are adjacent to the
popped one are tested, among which newly updated cells are
inserted into the open queue so the propagation continues.
Intuitively, Brushfire propagates changes (e.g., insertion or
deletion of sites) through a wavefront as shown in Figure 2
[7]. This wavefront updates GVD matrixes from the source
of the change and terminates when the change does not affect
any more cells.

Kalra et al. in their foundational work proposed a
Dynamic Brushfire algorithm [5] to incrementally rebuild
GVDs on grids. In this algorithm, the entry value of dists is
estimated by gird steps accumulated throughout the propa-
gation. Such an approximation potentially leads to either a
collision risk or overly conservative movements. To solve this
problem, Scherer et al. propagate actual Euclidean distance
from the exact source cell so that relative error can be
significantly reduced [23]. Following such an improvement,
Lau et al. in their work proposed novel methods to rebuild
GVDs with less computation time and fewer cell visits [9];
different from Kalra’s work, their approach does not rely on
site identifiers to detect GVD edges, so edges in the interior
of a concave site can be also detected. Furthermore, Lau et al.
provided additional thinning steps using “thinning patterns”
proposed by Zhang and Suen [24] to get one-cell wide edges.
Therefore the resulting edges are preferable in sparseness.

As shown in Figure 3, these algorithms commonly main-
tain threematrices, obsts, dists, and voros, to represent a GVD.
The matrix dists keeps discrete or actual distance between an
arbitrary entry (denoted by s) and the site cell from which s
propagates; thematrix obsts registers the site identifier and the



4 Mathematical Problems in Engineering

0 10 20 30 40 50
0

5

10

15

20

25

30

35

40

45

50

(a) Graphic representa-
tion of the sample grid-
based Voronoi map size
51 × 51

0 1 2 2 1 0 1 1 1 1 1 1 1 1 1 1 1 2 3 3 2 1
0 1 2 2 1 0 0 0 0 0 0 0 0 0 0 0 1 2 3 3 2 1
0 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 2 1
0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 2 1
0 1 2 3 3 2 2 2 2 2 2 2 2 2 3 3 3 3 4 3 2 1
0 1 2 3 3 2 1 1 1 1 1 1 1 2 3 4 4 4 4 3 2 1
0 1 2 3 3 2 1 0 0 0 0 0 1 2 3 4 5 5 4 3 2 1
0 1 2 3 3 2 1 0 1 1 1 0 1 2 3 4 5 5 4 3 2 1
0 1 2 3 3 2 1 0 1 2 1 0 1 2 3 4 5 5 4 3 2 2
0 1 2 3 3 2 1 0 1 2 1 0 1 2 3 4 5 5 5 4 3 3
0 1 2 3 3 2 1 0 1 1 1 0 1 2 3 4 5 6 5 5 4 4
0 1 2 3 3 2 1 0 0 0 0 0 1 2 3 4 5 6 6 5 5 5
0 1 2 3 3 2 1 1 1 1 1 1 1 2 3 4 5 6 7 6 6 6
0 1 2 3 3 2 2 2 2 2 2 2 2 2 3 4 5 6 7 7 7 7
0 1 2 3 4 3 3 3 3 3 3 3 3 3 4 5 5 6 7 7 7 7
0 1 2 3 4 4 4 4 4 4 4 4 4 4 5 5 6 6 6 6 6 6
0 1 2 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
0 1 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
0 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(b) Corresponding dists matrix where
each entry keeps integral distance to its
nearest site cell

3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 
3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 
3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 
3 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6 
3 3 3 3 7 5 5 5 5 5 5 5 5 5 7 7 7 7 6 6 6 6 
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 7 7 7 6 6 6 6 
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 
3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 
3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 
3 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1 
3 3 3 3 3 1 1 1 5 5 1 5 1 1 1 1 1 1 1 1 1 1 
3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(c) Corresponding obsts matrix where
each entry keeps the site identifier and
exact coordinate of its nearest site cell;
here only the site identifier is explicitly
represented

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 1 1 1 0 0 1 1 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(d) Corresponding voros matrix where
each entry shows if the site cell belongs
to theGVD (register as 1) or not (register
as 0)

Figure 3: Grid-based GVD matrices constructed by preproposed algorithms. (a) is the resulting GVD; (b), (c), and (d) are metric matrices
representing the left bottom 1/4 part.

coordinate of the exact site cell to which s is currently closest;
the matrix voros is a Boolean matrix which indicates whether
s is a GVD cell.

Although these algorithms are fast and efficient, it is
observed that the memory cost required by these matrices
will be prohibitive when the underlying space is very large
or is represented in very high resolutions. In addition,
navigation tasks cannot maximally benefit from these single-
layered matrixes if there are coarser but good enough
solutions. Fortunately, this drawback can be remedied if
a hierarchical GVD representation can be efficiently built,
since one can carry out navigation tasks in a coarse-to-fine
manner rather than always searching in the finest granularity.
Imma Boada et al. proposed a novel approach for building
polygonal approximations of GVDs that are computed in
continuous space [25]. They first use quadtree to encode all
the algebraic information required for generating an explicit
representation of the GVD boundaries. Then, by using this

hierarchical data structure a reconstruction strategy creates
the multilayered approximate GVD. However, because the
approximation process is mainly based on using line seg-
ments in place of curves in leaf nodes, this algorithm cannot
be directly applied in discrete environments inwhich the sites
are represented as sets of cells, not curves.

3. Pointerless Quadtree Representations

Whether a quadtree is adequate to be adopted by the
proposedGVDbuilder depends on its efficiency on executing
basic operations which will be frequently used during the
construction process (i.e., updating or querying the value of
a tree node efficiently). Therefore in this section we focus on
designing a data structure that facilitates these operations.We
first employ a spatial hashing technique proposed by Lu et al.
[26] to encode each tree node as a triple. These triples will be
used as indexes to map their corresponding tree nodes in a



Mathematical Problems in Engineering 5

1

4

3

2

41 2 3

m(1 ,1, 1)

m(1, 1, 1)

m(0, 1, 1)

m(0, 1, 1)

m(1, 1, 2)

m(1, 2, 1)

m(2, 4, 4)

m(2, 4, 4)

· · ·

Figure 4: Graphic representation of the mapping process. Nodes in different layer are encoded as a unique index. Based on this encoding
principle, all tree nodes can be maintained in a hash table.

hash table. We then describe the operations for updating and
querying tree nodes which will be used in Section 4 by our
PQ-GVD builder to compute quadtree based GVDs.

3.1. Encoding Principles. The construction of a quadtree can
be carried out in a top-down fashion: a squared map is
partitioned into 2 × 2 smaller squares; then the partition is
repeated to the nonleaf squares until the child squares are
pure or the finest resolution is reached. The directional path
for a tree node 𝑚 in layer 𝑠 is represented as 𝑚(𝑠; 𝑥

𝑚
, 𝑦
𝑚
),

where 0 ≤ 𝑠 ≤ 𝑁 denotes the current layer and (𝑥
𝑚
, 𝑦
𝑚
)

denotes the coordinates of m. m is a dyadic partition that
contains a set of the finest cells in layer𝑁:

𝑚(s; 𝑥
𝑚
, 𝑦
𝑚
) = {(𝑁; 𝑖, 𝑗) : 2

𝑁−𝑠
(𝑥
𝑚
− 1) + 1 ≤ 𝑖 ≤ 2

𝑁−𝑠
𝑥
𝑚
,

2
𝑁−𝑠
(𝑦
𝑚
− 1) + 1 ≤ 𝑗 ≤ 2

𝑁−𝑠
𝑦
𝑚
} .

(3)

In virtue of the hierarchical structure nature, when a tree
node 𝑚(𝑠; 𝑥

𝑚
, 𝑦
𝑚
) is given, we can obtain its father node as

𝑓(𝑠−1; [𝑥
𝑚
/2]+1, [𝑦

𝑚
/2]+1), where the symbol “[∗]” means

taking the lower integer value. We can also partition 𝑚 into
four child nodes in layer 𝑠 + 1; that is,

𝑚(𝑠; 𝑥
𝑚
, 𝑦
𝑚
) = {𝑐
1
(𝑠 + 1; 2𝑥

𝑚
− 1, 2𝑦

𝑚
− 1)

∪ 𝑐
2
(𝑠 + 1; 2𝑥

𝑚
, 2𝑦
𝑚
− 1)

∪ 𝑐
3
(𝑠 + 1; 2𝑥

𝑚
, 2𝑦
𝑚
)

∪ 𝑐
4
(𝑠 + 1; 2𝑥

𝑚
− 1, 2𝑦

𝑚
)} .

(4)

For convenience, in the remainder of this paper we
represent the partition operation on node 𝑚 as m.child and
its father node will be denoted asm.father.

Figure 4 shows a simple example of mapping a quadtree
into a hash table. The value of a node can be one of the two
distinct nonnegative integers:

𝑚.𝑠𝑡𝑎𝑡𝑒 = {
0 for inner node
𝑐 for leaf node,

(5)

where 𝑐 > 0 is a positive integer, representing the type of
the node. Compared to the standard pointer-based quadtree
description that requires six entries for the inner nodes (i.e.,
five pointers referring to the father and child nodes and one
entry maintaining the value), in this case only four integers
are needed (i.e., one for layer, two for coordinates, and one
for value). Hence, more than 33% memory can be saved.

3.2. Algorithms for Updating and Querying Tree Nodes. Dif-
ferent from the depth first searching manner adopted by
pointer-based quadtrees, our algorithm accesses the target
node by referring to its index. If the node has not yet been
built, its nearest ancestor will be located via launching a
backtracking process. Algorithm 1 shows the pseudocode of
the algorithm to update and query a tree node. Initially, the
quadtree is free and thus there is only one leaf node, that is,
the root, in the hash table. During the process of updating,
newnodeswill be created and inserted. If the four child nodes
with regard to the same parent node possess the same state
value owing to an updating operation, a backtracking will be
launched to merge these child nodes, modifying their father’s
state value into a leaf node and erasing these child nodes from
the hash table.

In the function of UpdateANode, if a tree node
𝑚(𝑠; 𝑥

𝑚
, 𝑦
𝑚
) has already been inserted into the table (lines 1

to 13), then its state will be updated through an instant access.
After the update, if 𝑚 is a leaf node, a backtracking process
will iteratively merge child nodes that have the same value
(lines 5 to 9). This process will be terminated when an inner
node (i.e., condition in line 5 is not satisfied) or the root of



6 Mathematical Problems in Engineering

UpdateANode (𝑚(𝑠; 𝑥
𝑚
, 𝑦
𝑚
), state)

1. if 𝑚 exists in the hash table
2. if 𝑚.state ̸= 0 (i.e.,𝑚 is a leaf node)
3. 𝑚.state← state
4. 𝑛 ← 𝑚.father
5. while all 𝑛’s children possess the same state
6. erase all 𝑛’s children from the table
7. 𝑛.state← state, 𝑛 ← 𝑛.father
8. if 𝑛 is the root node
9. break the while loop
10. if 𝑚.state = 0 (i.e.,𝑚 is a inner node)
11. 𝑚.state← state
12. for each 𝑛 ← 𝑚.child
13. ClearTree (𝑛)
14. if 𝑚 doesn’t exist in the hash table
15. NewANode (𝑚(𝑠; 𝑥

𝑚
, 𝑦
𝑚
), state)

ClearTree (𝑛(𝑠; 𝑥
𝑛
, 𝑦
𝑛
))

16. if 𝑛.state = 0 (i.e., 𝑛 is a inner node)
17. 𝑚 ← for each 𝑛.child
18. ClearTree (𝑚)
19. else erase 𝑛 from the table
NewANode (𝑚(𝑠; 𝑥

𝑚
, 𝑦
𝑚
), state)

20. while 𝑚 doesn’t exist and𝑚 ̸= root node
21. 𝑚 ← 𝑚.father
22. if 𝑚.state ̸= state
23. 𝑚.child← new 4 leaf nodes for
24. for each 𝑛 ← 𝑚.child
25. if (𝑥

𝑛
, 𝑦
𝑛
) = (𝑥

𝑚
,𝑦
𝑚
) 𝑛.state← state

26. else 𝑛.state← 𝑚.state
27. 𝑚.state← 0
QueryANode (m(s; 𝑥

𝑚
, 𝑦
𝑚
))

28. while 𝑚 doesn’t exist and𝑚 ̸= root node
29. 𝑚 ← 𝑚.father
30. return 𝑚.state

Algorithm 1: Pseudocode for updating and querying a node state value in the pointerless quadtree.

the tree is reached (line 9). Otherwise if𝑚 is an inner node, its
offspring will be erased from the table after its state is updated
(lines 10 to 13).These erasing operates are finished by function
ClearTree (lines 16 to 19).

In the contrast, if there is no record of node 𝑚 in the
table, then the function NewANode will be called to create
corresponding node instances (lines 14 to 15). It is clear that
no record of𝑚 in the table means that an ancestral leaf node
that contains the square area of m should be first located in
function NewANode (lines 20 to 21). After the location, if
this ancestor has a different value, its four child nodes will be
created and the state of the ancestor will become 0 (converts
to an inner node) (lines 22 to 27). The searching mechanism
of the function QueryANode is analogous to NewANode
(lines 28 to 30).

4. Incrementally Constructing GVDs in
Pointerless Quadtrees

Existing approaches for incrementally constructing GVDs
commonly set aside metric matrixes (as shown in Figure 3)

to maintain GVD data and update them during the propa-
gation of wavefronts. The main disadvantage of using these
matrixes is that the required memory is prohibitive when the
granularity is getting finer or the environment is very large.
Based on the pointerless quadtree representation discussed
in Section 3, we in this section use the pointerless quadtree in
place of preused metric matrixes to maintain corresponding
data.

Table 1 shows the GVD data which will be processed
during the execution of our algorithm. Those with symbol
“∗” are maintained in pointerless quadtrees. We do not use
quadtree to represent Obsts because its contour feature does
not provide strong spatial coherences and representing it in
quadtree will be more expensive than in metric matrix.

Figure 5 shows the flowchart describing the main steps
of the algorithm. The update is triggered by events which
makes some cells in the grid map transfer their state from
free to occupied or vice versa, such as movement, insertion,
or deletion of sites. In the first step, by repeatedly calling
the functionMarkSiteCell and (or) FreeSiteCell, all changed
grid cells are inserted into the priority queue Open which is
sorted by the entries in Dist. In step 2, functionUpdateGVD



Mathematical Problems in Engineering 7

Yes

Yes

start

Mark site?

MarkSiteCell

Free site

FreeSiteCell

UpdateGVD

ThinEdges

End

No

No

Approximation

Step 1 

Step 2

Step 4

Step 3 

Figure 5: The flowchart describing the process of building a
quadtree based GVD.

propagates the changes until there is no more affected cell
remaining inOpen list and thus builds themultilayeredGVD.
Step 3 calls the function Approximate to obtain pieces of
coarser but good enough roadmaps from the multilayered
GVD. In step 4, function ThinningEdges thins the rough
result to get one-cell wide edges.

4.1. Updating a GVD. The initial values of the GVD data
are set as Obst = 1, Dsit = ∞, Voro = false, and Raise =
false. This is based on the fact that there is no site within
the working space, or existing sites are infinitely far away.
As shown in Algorithm 2, when grid cell 𝑚 is marked as a
site cell by calling function MarkSiteCell, its Dist[𝑥

𝑚
][𝑦
𝑚
]

equals 0 and refers to itself as the closest site (lines 31 to 34).
Reversely, when 𝑚 is freed by calling function FreeSiteCell,
its corresponding states are reset (lines 35 to 39). Function
push(𝑚, 𝑑) inserts 𝑚 into Open with priority 𝑑 or updates
the priority if𝑚 has already been inserted (lines 34 and 39).

In the second step, the function UpdateGVD orderly
pops the next unprocessed cell 𝑚 with the lowest Dist value
until the queue is empty (lines 40 to 41). If𝑚 is cleared andnot
yet propagated a raise wavefront, the function PorcessRaise
is called (lines 42 to 44). If𝑚 has a valid closest site, then the
function ProcessLower is called (lines 45 to 49). Therefore a
lower wavefront is propagated. The pseudocode for the raise
and lower propagation is shown in Algorithm 3.

All cells enqueued in Open will be processed by either
ProcessLower(s) or ProcessRaise(s). At the beginning,
newly occupied cells call functionProcessLower(s) to launch

Table 1: The GVD data used by PQ-GVD builder.

Data name Semantics

∗
𝑉𝑜𝑟𝑜

A pointerless quadtree storing the resulting GVD
indicating if a grid is a GVD edge cell (by
checking its state as “true/1” or “false/2”).

∗
𝑅𝑎𝑖𝑠𝑒

A pointerless quadtree indicating the processing
type for a grid (by checking its state as “Raise/1” or
“Lower/2”).

∗
𝑂𝑏𝑠𝑡

A pointerless quadtree indicating which site a grid
belongs to (by checking its state as site ID,
represented in positive integer).

Dist A 2D integer matrix storing for each grid the
distance corresponding to its nearest site cell.

Open

A priority queue storing grid cells that are
enqueued when the wavefront (i.e., raise or lower)
propagates to them. Entries in Open are sorted in
ascending order; cells with lower value in matrix
Dist possess higher priority.

a “lower” wavefront which propagates the changes of Dist
and Obst to the affected cells, for example, 8-connected grids
(lines 59 to 67). Simultaneously, newly freed cells call function
ProcessRaise(s) to launch a “raise” wavefront which clear the
data of all cells whose closest site cell was the freed one (lines
50 to 58). During the interwoven of these two wavefronts,
neighbors affected by the processed cell are again enqueued
in Open and therefore the propagation continues.

The rough GVD edge cells are marked by calling function
CheckVoro when the condition 𝑑 < 𝐷𝑖𝑠𝑡[𝑥

𝑛
][𝑦
𝑛
] in line 64

is not satisfied. CheckVoro first tests if at least one of the two
cells (i.e., 𝑚 and 𝑛) is not adjacent to its closest site. If 𝑚 has
a valid closest site that is different from the closest site of 𝑐,
both𝑚 and 𝑛 can be the edge cell candidates (lines 72 to 76).

4.2. Approximation. The concept of an approximation is
an inexact representation of something that is still fine
enough to be used [14]. In many real world applications,
even if an accurate spatial representation is available, an
approximatedmodel can be preferable since it is good enough
and can significantly minimize the amount of computation
and complexity. For instance, a mobile robot can speed up
its navigation if it uses an approximated space model because
much fewer cell visits and computation are ensured.

In this section, we discuss how to approximate from a
pointer-quadtree based Voro which is obtained after step 2
(i.e., UpdateGVD shown in Figure 5). An outer approxi-
mation principle proposed by Ranade et al. [27] is applied,
treating grey nodes as GVD cells. A more accurate defini-
tion is given by Samet [28]: “Given an image 𝐼, the outer
approximation, OB(k) is a binary image defined by black
blocks (in this paper stands for GVD cells) and the grey
nodes at level k.” As an example, a GVD of dimension
2
8
× 2
8 which divides five points is given in Figure 6(a). By

executing functionUpdateGVD(), a quadtree basedVoro can
be constructed as shown in the top left of Figure 6(b).The top
right, bottom right, and bottom left denote approximations
at level 7, level 6, and level 5, respectively. The pseudocode



8 Mathematical Problems in Engineering

MarkSiteCell (𝑚(𝑠; 𝑥
𝑚
, 𝑦
𝑚
), 𝑠𝐼𝐷)

31. Dist [𝑥
𝑚
][𝑦
𝑚
] ← 0

32. Obst.UpdateANode(𝑚, 𝑠𝐼𝐷)
33. Check.UpdateANode(𝑚, true)
34. Open.push(𝑚, 0)
End
FreeSiteCell (𝑚(𝑠; 𝑥

𝑚
, 𝑦
𝑚
))

35. Obst.UpdateANode(𝑚, 1)
36. Raise. UpdateANode(𝑚, true)
37. Dist [𝑥

𝑚
][𝑦
𝑚
] ← ∞

38. Check.UpdateANode(𝑚, true)
39. Open.push(𝑚, 0)
End
UpdateGVD ()
40. while Open is not empty
41. 𝑚(𝑠; 𝑥

𝑚
, 𝑦
𝑚
) ← 𝑝𝑜𝑝(Open)

42. 𝑏 ← 𝑅𝑎𝑖𝑠𝑒.QueryANode(𝑚)
43. if 𝑏 = true
44. ProcessRaise(𝑚)
45. else
46. 𝑐 ← 𝑂𝑏𝑠𝑡.QueryANode(m)
47. if 𝑐 ̸= 1
48. Voro.UpdateANode(m,false)
49. ProcessLower(m)
End

Algorithm 2: Pseudocode for updating a GVD.

for the function Approximation is shown in Algorithm 4.
Because the approximations for each level take read-only
operations, that is, query, upon the quadtree Voro, they can
be processed in parallel.

The approximate Voronoi matrix is a Boolean matrix
denoted as ApproVoro (line 86). This function checks the
state values of all nodes in the level specified by the layer
parameter. Pure GVD cell nodes and gray nodes in this level
are registered as approximate GVD cells (lines 78 to 85).
This approximation process can be constrained in the area
affected by current update. In step 2, when each cell is popped
from the Open list, a global variable changeArea will be
checked, updating itself if the popped cell exceeds the area
that changeArea currently maintains. In the approximation
process, variable changeArea is used to check if an entry of
the approximate matrix should be processed (line 80).

4.3.Thinning Edges of Approximated GVDs. Theapproximate
GVD matrices obtained after step 3 contain rough edges
which are two or three cells wide. In the step of thinning
the rough edges, the thinning patterns (as shown in Figure 7)
proposed by Lau et al. [7] are employed to refine these
edges. The input taken by this thinning is the priority
queue, roughtEQueue, which involves all edge cells that are
newly created by Approximation (line 84). All the cells
in roughtEQueue are processed in two phases. In phase 1,
by modifying edge cells that are enclosed by 4-connected
edges (such cells are detected by matching pattern P8 3) as
unoccupied, erroneously connected edges can be separated.

In phase 2, cells are popped from the priority queue in
increasing order of distance. If a popped cell has more than
one neighbor edge cell and none of the patterns shown in
Figure 7 matches its location, then it is redundant and can be
removed by settingApproVoro[i][j] = falsewithout destroying
the connectivity.

5. Experiments and Analysis

In this section we employ statistical methods to compare
our algorithm with other competing methods on several
simulated scenarios. We also demonstrate the usefulness of
the quadtree basedGVDswhen used to carry out pathfinding
tasks.

In the worst case, that is, to represent a grid-basedmap in
which each grid possesses a different state value with regard
to its adjacent grids, the quadtree must expand all its inner
nodes till themost precise level. Suppose the size of themap is
2
𝑁
×2
𝑁
, 𝑁 = 1, 2, . . .; then the total size of the corresponding

pointerless quadtree will be

1 + 4 + 4
2
+ ⋅ ⋅ ⋅ + 4

𝑁
= 1 + [

4 (1 − 4
𝑁
)

(1 − 4)
] . (6)

So the space complexity is 𝑂(4𝑁).
As for the time complexity of querying a node, since we

build the quadtree in terms of hash tables, an existing node
can be located in constant time.However sometimes the node
is absorbed by a larger leaf node and there is no instance
inserted in the table. In this case we can search according



Mathematical Problems in Engineering 9

ProcessRaise (𝑚(𝑠; 𝑥
𝑚
, 𝑦
𝑚
))

50. for all 𝑛(𝑠; 𝑥
𝑛
, 𝑦
𝑛
)∈Adj8(𝑐)

51. 𝑏 ← 𝑂𝑏𝑠𝑡.QueryANode(𝑛)
52. 𝑐 ← 𝑅𝑎𝑖𝑠𝑒.QueryANode(𝑛)
53. if 𝐷𝑖𝑠𝑡[𝑥

𝑛
][𝑦
𝑛
] ̸=∞ and 𝑐 = true

54. if 𝑏 has been removed
55. ClearCell(𝑛)
56. Raise.UpdateANode(𝑛, true)
57. Open.push(𝑛,𝐷𝑖𝑠𝑡[𝑥

𝑛
][𝑦
𝑛
])

58. Raise.UpdateANode(𝑚,false)
End
ProcessLower (𝑚(𝑠; 𝑥

𝑚
,𝑦
𝑚
))

59. for all 𝑛(𝑠; 𝑥
𝑛
, 𝑦
𝑛
)∈Adj8(𝑚)

60. 𝑏 ← 𝑅𝑎𝑖𝑠𝑒.QueryANode(𝑛)
61. 𝑐 ← 𝑂𝑏𝑠𝑡.QueryANode(𝑚)
62. if 𝑏 = false
63. 𝑑 ← 𝐷𝑖𝑠𝑡[𝑥

𝑚
][𝑦
𝑚
] + dist

64. if 𝑑 < 𝐷𝑖𝑠𝑡[𝑥
𝑛
][𝑦
𝑛
]

65. Obst.UpdateANode(𝑛,𝑐)
66. Open.push(𝑛, 𝑑)
67. else CheckVoro (𝑚,𝑛)
End
CheckVoro(𝑚(𝑠; 𝑥

𝑚
, 𝑦
𝑚
), 𝑛(𝑠; 𝑥

𝑛
, 𝑦
𝑛
))

68. 𝑎 ← 𝑂𝑏𝑠𝑡.QueryANode(𝑚)
69. 𝑏 ← 𝑂𝑏𝑠𝑡.QueryANode(𝑛)
70. 𝑐 ← 𝐷𝑖𝑠𝑡[𝑥

𝑚
][𝑦
𝑚
]

71. 𝑑 ← 𝐷𝑖𝑠𝑡[𝑥
𝑛
][𝑦
𝑛
]

72. if (𝑐 > 10 ∨ 𝑑 > 10) ∧ (𝑎 ̸= 1) ∧ (𝑎 ̸= 𝑏)
73. if 𝑐 ≤ 𝑑
74. Voro.UpdateANode(𝑚, true)
75. if 𝑑 ≤ 𝑐
76. Voro.UpdateANode(𝑛, true)
End

Algorithm 3: Pseudocode for the raise and lower propagation.

to the layer number and the location that are included in
the given index. Based on such a backtracking strategy the
searching time only depends on the depth of the quadtree. In
the worst case the time complexity is degenerated to 𝑂(𝑁),
which equals the average time needed by a blind search.

The following experimental analysis is to show that the
pointerless quadtree representation method is quite suitable
for storing grid-based data structures which possess large
areas of the same state value. The GVD data which is
generated and maintained by the proposed PQ-GVD builder
just has such kind of structural features.

5.1. Experimental Analysis. We compare our algorithm to
Dynamic Brushfire (we abbreviate it as DB below) and the
method proposed by Lau et al. (we abbreviate it as BL below)
[9]. The scenarios are a set of 2𝑁 × 2𝑁 grid maps (𝑁 is an
integer and 7 ≤ 𝑁 ≤ 13) which have approximately 20% cells
occupied by several predefined sites. We take Figure 8 as an
example to describe the performance of different algorithms.
The size of the underlying map shown in Figure 8 is 28 ×
2
8. Figures 8(a), 8(b), and 8(c) are GVDs built by DB, BL,
and our algorithm, respectively. Figure 8(d) to Figure 8(f) are

approximated roadmaps extracted from Figure 8(c). We ran
each algorithm in each granularity for 100 times.

The comparison of the memory cost among the three
approaches is shown in Table 2 and Figure 9. From the table
and the figure we see that, for the maps that are smaller
than 210 × 210, our PQ-GVD builder needs more space to
maintainObst andVoro than those used byDB andBL.This is
because the extra memory required by a quadtree can offset
or even exceed the memory our PQ-GVD builder can save.
Nevertheless, as the memory cost is not prohibitive in the
cases of small maps, the increased cost can be negligible (e.g.,
for the worst case, a 210 × 210 map needs only 1.4 megabytes
to maintain its corresponding quadtree representation). For
maps that are larger than 210 × 210, our PQ-GVD builder
generally saves an order of magnitude memory, because the
quadtree representations on Obst and Voro save a lot of
memory by merging sets of cells that have the same values
into one node. In addition, the matrix bRaise even needs only
32 bytes to maintain the data for any arbitrary granularity,
since, when the update is terminated, all entries in the matrix
will be set as false and there will be only a root node in its
quadtree representation.



10 Mathematical Problems in Engineering

50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250

(b)

50 100 150 200 250

50

100

150

200

250

(c)

50 100 150 200 250

50

100

150

200

250

(d)

Figure 6:The original pointerless quadtree based GVD (a) and the approximations built in level 7 (b), level 6 (c), and level 5 (d), respectively.

1
s0
0

01
s0

10
0s

0s
10

0
1s1

0

1
0s0

1

1
1s1

1

0
s1
1

10
s1

01
1s

1s
01

0
1s1

0

1
0s0

1

4-connected 8-connected

P4 1 P8 1 P8 2 P8 3P4 2

Figure 7: Patterns used by edge thinning. Arrows indicate application of rotated copies.

5.2. Usefulness in Multilayered Pathfinding Tasks. In order
to demonstrate the usefulness of the quadtree based GVDs
on navigation tasks, three mobile robots operating in a grid
map of size 28 × 28 (as shown in Figure 10) were simulated.
These robots were all located at the same start grid on
the bottom left. For each searching task, each robot was
given a unique destination within the top right area. The
searching spaces adopted by these agents were (1) the whole
grid map; (2) GVD matrices generated by BL; and (3) the
multilayered roadmaps which are approximated from the
pointerless quadtree based GVDs.

For those pathfinding methods who do not construct
GVDs, their underlying searching space is the whole grid

map and the basic searching strategy is also the A∗ algorithm.
According to the pathfinding problem requirements, some
extra improvements are needed to make the algorithm be
practically implementable. For example, the improved algo-
rithms should be able to generate smooth path and carry out
efficient collision detections.

There are indeed some improvement versions to deal
with issues mentioned above. To improve the optimality and
smooth of the resulting paths it is often necessary to apply
a postprocessing smoothing step [29]; lifelong planning A∗
(LPA∗) [30] and Dynamic A∗ Lite (D∗ lite) [31] et al. were
proposed to be incremental search algorithms; as for the
large search space, the Hierarchical Pathfinding A∗ (HPA∗)



Mathematical Problems in Engineering 11

50 100 150 200 250

50

100

150

200

250

(a) Build by DB

50 100 150 200 250

50

100

150

200

250

(b) Build by BL

50 100 150 200 250

50

100

150

200

250

(c) Build by us

50 100 150 200 250

50

100

150

200

250

(d) Approximation in 27 × 27

50 100 150 200 250

50

100

150

200

250

(e) Approximation in 26 × 26
50 100 150 200 250

50

100

150

200

250

(f) Approximation in 25 × 25

Figure 8: The maps used to test different algorithms.

[32] is proposed to carry out a coarse-to-fine search. Besides
variant versions of the basic A∗ algorithm, the potential fields
of the map can be precomputed to generate driven forces,
navigating agents heading to the destination [33].

The reason we use GVD as the underlying search space
in pathfinding tasks is because: (1) when compared to the

whole grid map, a GVD is a sparse skeleton and a much
reduced search space; (2) the proposed PQ-GVD builder
can incrementally construct and locally repair the GVD,
which is quite efficient for dynamic environments; (3) a
GVDgenerates information aboutmaximumclearance to the
obstacles in the map so collision check is easy to be carried



12 Mathematical Problems in Engineering

Table 2: A comparison of the memory cost (in megabyte) of the proposed algorithm to its counterparts. The sizes of the underlying maps
are set as 2𝑁 × 2𝑁, where𝑁 ranges from 7 to 13.

Algorithm 𝑁 = 7 8 9 10 11 12 13
DB

Obst 0.06251 0.25002 1.00013 4.00001 16.00021 64.00011 256.00032
Voro 0.01562 0.0625 0.25003 1.00000 4.00005 16.00002 64.00012
bRaise 0.01561 0.0625 0.25007 1.00001 4.00000 16.00002 64.00008

BL
Voro 0.01562 0.0625 0.25003 1.00000 4.00005 16.00002 64.00012
bRaise 0.01561 0.0625 0.25007 1.00001 4.00000 16.00002 64.00008

PQ-GVD builder
Obst 0.080097 0.187626 0.459812 0.767155 1.900394 2.352141 6.338497
Voro 0.139286 0.316853 0.796131 1.277332 3.168629 5.103362 8.326475
bRaise 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034 0.000034

0

1

2

3

4

5

6

7 8 9 10 11 12 13N
at

ur
al

 lo
ga

rit
hm

 o
f t

he
 m

em
or

y 

DB Obst
BL Voro
PQ-GVD Obst

PQ-GVD Voro
PQ-GVD Raise

N: the size of the underlying grid maps, that is, 2N

co
st,

 th
at

 is
, l

n(
x

)

Figure 9: The average computation time for updating GVD dia-
grams compared to related work.

out; (4) as a by-product of the GVD builder, the distance
matrix can be used to build a potential field; this field can
generate artificial forces to navigate agents onto the GVD
edges so that local minima near by the obstacles could be
avoided efficiently.

The simulation results are shown in Figure 10 and Table 3.
Agent adopting A∗ to search in the whole map (blue path
in Figure 10(a)) spends the most computation time and cell
visits. Moreover, because there is no further information
about maximal clearance to the sites, the resulting path (in
blue) contains several cells near the sites, which will lead
collisions when the physical size of the agent exceeds the
limited clearance.

The agent that adopts A∗ to search in the GVD matrices
only explores GVD edge cells (green path in Figure 10(a)), so
it saves significantly more computation time. The resulting
path consists of (1) an initial route from the start cell to the
nearest GVD cell; (2) a set of connectingGVD edges ensuring
the reachability of the departureGVDcell which is the nearest
to the destination; (3) a final route from departure cell to the
destination.

Table 3: A comparison of average cell visits and execution time for
the instance shown in Figure 10.

Search space Time
(second)

Cell
visits

Trajectory
color

Whole map 72.91 56326 Blue
GVD matrices 0.01443 1101 Green
Approximation in
2
7
× 2
7 0.00147 831 Red in

Figure 10(b)
Approximation in
2
5
× 2
5 0.00024 373 Red in

Figure 10(c)

Although the GVD matrices endowed the agent with a
reduced search space, the whole process is still in one single
granularity. From a practical point of view, we only need to
demonstrate a coarser but good enough path in a higher level,
while the detailed path can be localized and worked out in
order.Therefore, unlike the agent searching inGVDmatrices,
the agent searching in a coarse-to-fine manner first tried to
find a path from the top layer (as shown in Figure 10(b)).
If it is not found, another search in the next finer layer will
be executed. From the data shown in Table 3 we see that
searching on the roadmaps needs even less time and fewer cell
visits. Moreover, if a refined path is needed, an agent does not
have to plan thewhole finest path beforemoving. It can divide
the resulting coarse path into several segments and then
carry out detailed navigation just on current segment. Such a
strategy is more flexible since if the underlying environment
is changed, a reconstruction will be carried out and newly
repaired roadmaps will ensure the agent replanning a new
high-level route to follow.

6. Conclusions

In this paper we presented an algorithm named pointerless
quadtree based GVD builder (PQ-GVD builder) to incre-
mentally update GVDs in discrete environments. Compared
to previous approaches, PQ-GVD builder uses pointerless
quadtrees in place of metric matrices to compute and main-
tain GVDs. An efficient hashing technique was adopted to



Mathematical Problems in Engineering 13

50 100 150 200 250

50

100

150

200

250

(a)

50 100 150 200 250

50

100

150

200

250

(b)

50 100 150 200 250

50

100

150

200

250

(c)

Figure 10: The graphical representation of three sample resulting paths generated by three robots. These paths are in blue (generated by
searching the whole map in (a)), green (generated by searching GVDmatrices in (a)), and red (generated by searching approximate map, that
is, 25 × 25 in (b) and 27 × 27 in (c)).

Approximation (layer, changeArea)
77. 𝑟𝑎𝑛𝑔𝑒 ← 2layer
78. for each 𝑖 from 0 to range
79. for each 𝑗 from 0 to range
80. if (𝑖, 𝑗) is in changeArea
81. 𝑠 ← 𝑉𝑜𝑟𝑜.QueryANode(𝑚(layer; 𝑖, 𝑗))
82. if 𝑠.state = gray or 𝑠.sate = true
83. 𝑏 ← 𝑡𝑟𝑢𝑒

84. roughtEQueue.push((𝑙𝑎𝑦𝑒𝑟; 𝑖, 𝑗))
85. else 𝑏 ← 𝑓𝑎𝑙𝑠𝑒
86. 𝐴𝑝𝑝𝑟𝑜𝑉𝑜𝑟𝑜[𝑖][𝑗] ← 𝑏

Algorithm 4: Pseudocode for approximations.

encode each tree node to map the whole tree into a hash
table so that random access and instant query can be ensured.
Based on the encoding principles, we designed a PQ-GVD
builder to incrementally constructing quadtree based GVDs.
The statistic test showed that the quadtree based GVDs can
be used to represent large scale maps or maps with high
resolutions. Due to the feature of multilayered data structure,
we further proposed an approximation method to retrieve
roadmaps in different granularities. These roadmaps can be
adopted by mobile robots to carry out coarse-to-fine path
finding tasks and are more efficient when inexact but good
enough paths exist in higher levels.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China no. 91024030. The authors appreci-
ate fruitful discussion with the Sim812 group: Peng Jiao,
Xiaocheng Liu, Shiguang Yue, Lin Sun, Qi Zhang, and Liang
Zhu. Finally, they appreciate feedback from their reviewers.



14 Mathematical Problems in Engineering

References

[1] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta∗: any-
angle path planning on grids,” Journal of Artificial Intelligence
Research, vol. 39, pp. 533–579, 2010.

[2] Y. Lu, X. Huo, and P. Tsiotras, “Beamlet-like data processing for
accelerated path-planning using multiscale information of the
environment,” in Proceedings of the 49th IEEE Conference on
Decision and Control (CDC ’10), pp. 3808–3813, December 2010.

[3] M. T. Rantanen and M. Juhola, “Using probabilistic roadmaps
in changing environments,” Computer Animation and Virtual
Worlds, 2013.

[4] N.M.Wardhana,H. Johan, andH. S. Seah, “Enhancedwaypoint
graph for surface and volumetric path planning in virtual
worlds,”TheVisual Computer, vol. 29, no. 10, pp. 1051–1062, 2013.

[5] N. Kalra, D. Ferguson, and A. Stentz, “Incremental reconstruc-
tion of generalized Voronoi diagrams on grids,” Robotics and
Autonomous Systems, vol. 57, no. 2, pp. 123–128, 2009.

[6] J. O. Wallgrün, “Qualitative spatial reasoning for topological
map learning,” Spatial Cognition and Computation, vol. 10, no.
4, pp. 207–246, 2010.

[7] B. Lau, C. Sprunk, and W. Burgard, “Improved updating of
Euclidean distance maps and Voronoi diagrams,” in Proceedings
of the 23rd IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’10), pp. 281–286, Taipei, Taiwan,
October 2010.

[8] N. Kalra, D. Ferguson, and A. Stentz, “Incremental reconstruc-
tion of generalized Voronoi diagrams on grids,” Robotics and
Autonomous Systems, vol. 57, no. 2, pp. 123–128, 2009.

[9] B. Lau, C. Sprunk, andW. Burgard, “Efficient grid-based spatial
representations for robot navigation in dynamic environments,”
Robotics and Autonomous Systems, vol. 61, no. 10, pp. 1116–1130,
2013.

[10] J. Vörös, “Low-cost implementation of distance maps for path
planning using matrix quadtrees and octrees,” Robotics and
Computer-Integrated Manufacturing, vol. 17, no. 6, pp. 447–459,
2001.

[11] F. Dehne, A. G. Ferreira, and A. Rau-chaplin, “Parallel process-
ing of pointer based quadtrees on hypercube multiprocessors,”
in Proceedings of the International Conference on Parallel Pro-
cessing, 1991.

[12] M. G. Choi, E. Ju, J.-W. Chang, J. Lee, and Y. J. Kim, “Linkless
octree using multi-level perfect hashing,” Computer Graphics
Forum, vol. 28, no. 7, pp. 1773–1780, 2009.

[13] F. B. Atalay and D. M. Mount, “Pointerless implementation of
hierarchical simplicial meshes and efficient neighbor finding in
arbitrary dimensions,” International Journal of Computational
Geometry & Applications, vol. 17, no. 6, pp. 595–631, 2007.

[14] X. Yin, I. Düntsch, and G. Gediga,Quadtree Representation and
Compression of Spatial Data, Springer, Berlin, Germany, 2011.

[15] R. Fabbri, L. da F. Costa, J. C. Torelli, and O. M. Bruno,
“2D Euclidean distance transform algorithms: a comparative
survey,” ACM Computing Surveys, vol. 40, no. 1, article 2, 2008.

[16] N. S. V. Rao, N. Stoltzfus, and S. S. Iyengar, “A “retraction”
method for learned navigation in unknown terrains for a
circular robot,” IEEE Transactions on Robotics and Automation,
vol. 7, no. 5, pp. 699–707, 1991.

[17] H. Choset, S. Walker, K. Eiamsa-Ard, and J. Burdick, “Sensor-
based exploration: incremental construction of the hierarchi-
cal generalized Voronoi graph,” The International Journal of
Robotics Research, vol. 19, no. 2, pp. 126–148, 2000.

[18] C. M. Gold, P. R. Remmele, and T. Roos, “Voronoi methods
in GIS,” in Algorithmic Foundations of Geographic Information
Systems, vol. 1340, pp. 21–35, Springer, Berlin, Germany, 1997.

[19] I. Lee and M. Gahegan, “Interactive analysis using Voronoi
diagrams: algorithms to support dynamic update from a generic
triangle-based data structure,” Transactions in GIS, vol. 6, no. 2,
pp. 89–114, 2002.

[20] K. E. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha, “Fast
computation of generalized Voronoi diagrams using graphics
hardware,” in Proceedings of the 26th annual conference on
Computer graphics and interactive techniques (SIGGRAPH ’99),
1999.

[21] L. Vachhani, A. D. Mahindrakar, and K. Sridharan, “Mobile
robot navigation through a hardware-efficient implementation
for control-law-based construction of generalized voronoi dia-
gram,” IEEE/ASME Transactions on Mechatronics, vol. 16, no. 6,
pp. 1083–1095, 2011.

[22] J. Barraquand and J. -C. Latombe, “Robot motion planning: a
distributed representation approach,” Tech. Rep. STAN-CS-89-
1257, Computer Science Department, Stanford University, 1989.

[23] S. Scherer, D. Ferguson, and S. Singh, “Efficient C-space and
cost function updates in 3D for unmanned aerial vehicles,” in
Proceedings of the IEEE International Conference onRobotics and
Automation (ICRA ’09), pp. 2049–2054, Kobe, Japan,May 2009.

[24] T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for
thinning digital patterns,” Communications of the ACM, vol. 27,
no. 3, pp. 236–239, 1984.

[25] I. Boada, N. Coll, N. Madern, and J. A. Sellarès, “Approxima-
tions of 2D and 3D generalized Voronoi diagrams,” Interna-
tional Journal of Computer Mathematics, vol. 85, no. 7, pp. 1003–
1022, 2008.

[26] Y. Lu, X. Huo, and P. Tsiotras, “Beamlet-like data processing for
accelerated path-planning using multiscale information of the
environment,” in Proceedings of the 49th IEEE Conference on
Decision and Control (CDC ’10), pp. 3808–3813, December 2010.

[27] S. Ranade, A. Rosenfeld, and H. Samet, “Shape approximation
using quadtrees,” Pattern Recognition, vol. 15, no. 1, pp. 31–40,
1982.

[28] H. Samet, “Data structures for quadtree approximation and
compression,” Communications of the ACM, vol. 28, no. 9, pp.
973–993, 1985.

[29] I. Millington and J. D. Funge, Artificial Intelligence for Games,
Taylor & Francis, New York, NY, USA, 2009.

[30] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A∗,”
Artificial Intelligence, vol. 155, no. 1-2, pp. 93–146, 2004.

[31] S. Koenig and M. Likhachev, “D∗ Lite,” in Proceedings of the
AAAI Conference of Artificial Intelligence, pp. 476–483, August
2002.

[32] A. Botea,M.Müller, and J. Schaeffer, “Near optimal hierarchical
path-finding,” Journal of Game Development, vol. 1, pp. 7–28,
2004.

[33] J. Hagelback, “Potential-field based navigation in StarCraft,” in
Proceedings of the IEEE International Conference on Computa-
tional Intelligence and Games (CIG ’12), 2012.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


