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Recognizing destinations of a maneuvering agent is important in real time strategy games. Because finding path in an uncertain
environment is essentially a sequential decision problem, we can model the maneuvering process by the Markov decision process
(MDP). However, the MDP does not define an action duration. In this paper, we propose a novel semi-Markov decision model
(SMDM). In the SMDM, the destination is regarded as a hidden state, which affects selection of an action; the action is affiliated
with a duration variable, which indicates whether the action is completed. We also exploit a Rao-Blackwellised particle filter (RBPF)
for inference under the dynamic Bayesian network structure of the SMDM. In experiments, we simulate agents’ maneuvering in a
combat field and employ agents’ traces to evaluate the performance of our method. The results show that the SMDM outperforms
another extension of the MDP in terms of precision, recall, and F-measure. Destinations are recognized efficiently by our method
no matter whether they are changed or not. Additionally, the RBPF infer destinations with smaller variance and less time than the

SPE. The average failure rates of the RBPF are lower when the number of particles is not enough.

1. Introduction

In the recent decades, many commercial real time strategy
(RTS) games such as Star Craft and War Craft become more
and more popular. A key problem in developing these games
is to create Al players who can recognize the intentions of
their opponents. Then, the game will be more challenging and
interesting [1].

A typical and significant intention in RTS games is the
destination of a maneuvering player. In many attacking mis-
sions, players need to plan the path with a given destination
and the current situation, move along the planned path,
and then destroy the building of enemies. Thus, if the Al
players can recognize the destination with observed traces
of opponents, they can prepare for the defense. Because
of these benefits, some recognizing methods have been
applied in some digital games. Like the intention recognition,
recognizing the destination of a maneuvering agent usually
consists of three steps: formalization, parameter estimation,
and destination inference [2]. In this paper, we only focus
on formalization and inference. The parameters of the oppo-
nents’ real decision model are directly used. We need to note

that these parameters can also be estimated by some machine
learning algorithms or simply counting [3].

Hidden Markov models (HMMs) are widely used to
model the maneuvering process of an agent. The idea behind
HMMs for destination recognition is as follows: regarding the
position of the agent as a hidden state, probabilities of tran-
siting between waypoints are modelled by a transition matrix.
In other words, a Markov chain represents all possible paths.
From the view of planning, HMMs focus on representing
the system states but neglect the actions. However, the action
determined by the situation affects the state transition matrix
very much. Particularly, when the agent is in a dynamic
environment, the concept of action is quite important to
model the behavior precisely.

In the uncertain planning domain, planning is defined
as a sequential decision problem: the agent selects actions
sequentially based on the state [4]. Because the action will
affect the future state, the agent needs to compute the
accumulative reward to get the optimal solution. Solving
sequential decision problems is under the framework of
Markov decision process (MDP). Comparing to the HMM,
a MDP can describe actions of the agent and the intersection



between the agent and the environment. Thus, many models
based on the MDP framework are proposed for intention
recognition.

In many cases, a complex mission will be decomposed
into sublevel tasks repeatedly until the mission only consists
of primitive actions. To present decision process hierarchi-
cally, Bui et al. [5] proposed an abstract hidden Markov
model (AHMM) based on the notion of abstract Markov
policies (AMPs), which can be described simply in terms
of a state space and a Markov policy that selects among a
set of other AMPs. When the AHMM is used in intention
recognition, it only concerns the probabilities of selection
of a policy or abstract policy and does need to build the
reward functions as MDPs. A problem of the AHMM is
that it does not allow the top-level policy to be interrupted
when the subplan is not completed. To solve this problem, we
refined the structure of AHMM and proposed a new model
named AHMM with Changeable Top-level Policy (AHMM-
CTP) [6]. In AHMM-CTP, the top policies are allowed to be
changed and are executed from top to bottom, which means
the subplans can be terminated forcedly when the top policies
are interrupted. However, the execution of primitive actions
of AHMM-CTP is still a MDP, which means a primitive
action will be terminated at each step. In the RTS game, a
primitive action of path planning is moving for a distance
in a direction. Since the simulation step is quite short, the
primitive action will keep for several steps. This process is
consistent with the semi-Markov decision process (SMDP) in
the domain of planning [7].

Based on the idea of the SMDP, we propose a semi-
Markov decision model (SMDM) to formalize the maneu-
vering behaviors in RTS games. The SMDM has a similar
structure as a three-layer AHMM-CTP. It models the inten-
tion (destination), the action, and the situation hierarchically:
actions are selected depending on the intention and situa-
tions, and actions result in updated situations. One difference
is that, in the SMDM, the primitive action is associated with
a duration variable, which indicates whether the primitive
action is completed. Obviously, the SMDM can also present
multilayer policies as AHMM-CTP, but this complex model
is not discussed in this paper.

Inferring destinations online is actually a filtering prob-
lem [8]. As an approximate inference method, the particle
filter (PF) is suitable to infer the destinations modelled by
SMDP, because it does not limit the sort of noise and can
tackle partially missing data. Although other existing classic
methods are also possible to solve this problem, they will
be infeasible when the maximum duration of actions is
unknown. Another advantage of the PF is that the costing
time only depends on the number of particles. Thus, the time
constraint can be satisfied by reducing the number of par-
ticles, if the computation resource is not enough. However,
when the state space is multidimensional, a small number
of particles will result in a very high estimating variance.
One solution is to use the Rao-Blackwellised particle filter
(RBPF) which combines accurate inference and the Monte
Carlo sampling [9]. In the RBPF, some variables of a particle
are not sampled but are presented as distributions. And their
posterior distribution is computed by accurate inferring after
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other variables are instantiated. In this way, the state space is
declined. The RBPF has been successfully applied in [5, 6].
However, the accurate inference is highly correlated to the
dynamic Bayesian network (DBN) structure of the model.
To compute the posterior distributions of uninstantiated
variables accurately at each step, we exploit the link reversal
method based on the DBN structure of the SMDM.

We design a combat scenario to validate our SMDM and
the RBPF: on a grid map, a soldier moves to a predefined
destination and tries to get far from a patrolling vehicle at
the same time. Our goal is to recognize the destination of
the soldier with observed traces. Based on this scenario, we
design a decision model for the soldier and generate a dataset
consisting of 100 traces. With this dataset, statistical metrics
including precision, recall, and F-measure are computed
by both the SMDM and AHMM-CTP. The results show
that the SMDM outperforms the AHMM-CTP in all three
metrics. The recognition results of two specific traces are
also analyzed, which shows that the SMDM can perform
well no matter the soldier’s destination is changed on the
half or not. We also compare the estimation variance and
the costing time of standard particle filter (SPF) and the
RBPE. The results show that the RBPF can get results with
smaller weighted variance and cost less time at the same time,
when the number of particles is large. Additionally, when
the number of particles is not enough, the RBPF has a lower
average failure rate than the SPE

The rest of the paper is organized as follows: the next
section introduces some related work of formalization and
inference. Section 3 analyzes the maneuvering process in the
RTS game and gives the formal definition of the SMDM as
well as its DBN structure. Section 4 introduces how to use
RBPF to infer destinations approximately. Section 5 presents
the background, settings, and results of our experiment.
Subsequently, we have conclusions and discuss future works
in the last section.

2. Related Work

Since the problem of intention recognition or plan recog-
nition was proposed as an intersection of psychology and
artificial intelligence, people have used different ways to
formalize the planning or the decision process. In early days,
the formalization is usually correlated with the conception
of plan library. The event hierarchy proposed by Kautz and
Allen may be the earliest representation for plan recognition
[10]. In Kautzs theory, plans and actions are both defined
as events, and an event hierarchy describes abstraction,
instantiation, components, and functions by first order logic.
Kautz’s theory is a milestone in plan recognition, but it may
fail when there are two or more hypotheses explaining the
observations. To speed up the reason process, Avrahami-
Zilberbrand and Kaminka presented a Feature Decision Tree
(FDT), which efliciently mapped observations to a plan. In a
FDT, nodes correspond to features, and branches correspond
to conditions on their values. Since the FDT is actually a
special sort of decision tree, it can be built automatically [11].
Another famous model in the automated planning domain
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is hierarchical task networks (HTN). A HTN recursively
decomposes tasks into lower level components, until a plan
constituted by a series of low-level actions or primitive tasks is
got [12]. Although the HTN is proposed for auto planning, it
can also be used to describe complex tasks in the recognition
problem [13]. The common problem of event hierarchy,
FDT and HTN, is that they do not use probabilistic theory
to model the uncertainty and dynamics in real world or
simulation systems and cannot provide us with probabilities
of intentions. Actually, other formalization methods which
aim to present plans in classic planning theory suffer the same
problem.

The well-known Probabilistic Graphical Models (PGMs)
use the graph-based representation to compactly encode
complex distributions: the nodes correspond to the variables,
and the edges correspond to direct probabilistic interactions
between them [14]. Since PGMs are very expressive and can
provide many effective learning and inferring algorithms,
many researchers applied different sorts of PGMs to model
the planning or strategy, such as conditional random fields
(CREFs) [15], Markov logic networks (MLNs) [16], dynamic
Bayesian networks (DBNs) [17], hidden Markov models
(HMMs) [18], Markov decision processes (MDPs) [19], and
other extensions [20]. Additionally, representations in some
plan recognition theories such as parsing trees can also be
viewed as special cases of directed PGMs [21].

PGMs have been successfully applied to recognize inten-
tions in many domains. For example, the hidden semi-
Markov model (HSMM) is applied to estimate the position of
an opponent in the game Counter Strike [22]. The parameters
of the model were learnt from a dataset, which consists of
190 game logs collected in a champion-level competition,
and both prediction accuracy error and human similarity
error are computed to evaluate the estimation performance.
Southey et al. also used the HSMM for recognizing the
destinations and start point in the RTS game War 3. Besides
solving the recognition problem, they further abstract the
map and make inference feasible even when number of
grids is large and observations are partially missing [8].
Zouaoui-Elloumi et al. used the HMM to model the behaviors
of ships in the harbor. Their goal was not to predict the
destination or position of the object, but to recognize the
behavior pattern of a ship when it enters into the harbor [23].
Duong et al. proposed a Coxian hidden semi-Markov model
(CxHSMM) for recognizing human activities of daily living
(ADL) [24]. The CxHSMM modifies HMM in two aspects:
on one hand, it is a special DBN representation of two-layer
HMM, and it also has termination variables; on the other
hand, it used Coxian distribution to model the duration of
primitive actions explicitly.

van Kasteren et al. further compared the performance of
CRE HMM, SMCRE, and HSMM in the ADL domain, and
real data collected in the lab was used [25]. In their exper-
iments the HSMM consistently outperformed the HMM,
showing that accurate duration modeling can result in a
significant increase in recognition performance. SMCREF only
slightly outperformed CRE showing that CRF was more
robust in dealing with violations of the modeling assump-
tions. Auslander et al. evaluated the performances of the

HMM, MLNs, and CRFs for detecting (small boat) maritime
attacks. The data was obtained from the 2010 Trident Warrior
exercise (Summer 2010) and the results showed that PGMs
outperformed the deployed rule-based approach on these
tasks [26].

Ullman et al. proposed a model for inferring social
goals from peoples’ actions, based on inverse planning in
multiagent MDPs [27]. In their model, under assuming that
agents are rational, the most likely goal which drives observed
behaviors is estimated. Tastan et al. presented a framework to
predict the positions of the opponent [28]. Unlike the work
of Hladky, they used the learned MDP as the motion model
of the PE. Another contribution was that they defined tactical
features as the states instead of the directly observed data.

In the inference problem, the destination is regarded as
a hidden state. Accurate inference algorithms such as HMM
filter can be used to compute the posterior probabilities
of destinations, but they usually cost much time and need
perfect dataset. Another way is approximate inference, and
one of the most widely used algorithms is the PE. Besides the
works in [8, 22, 28], Weber et al. estimated the location of
enemy units that have been encountered in Star Craft based
on particle filter. In their work, each single particle, which
consists of class, weight, and trajectory, corresponds to one
previously encountered enemy unit [29]. Pfeffer et al. used
DBN:Ss to represent the tasks that units collaborated to attack
targets in an urban environment. They used a factor PF to
reason the team composition and goal [30].

3. Modeling Maneuvering by the SMDM

In this section, we discuss how to model the maneuvering
process in RTS games by our SMDM. A simple example is
used to explain how the agent plans path and moves between
grids on a grid-based map. Then, definitions of the SMDM
and their corresponding meanings in the maneuvering pro-
cess are given. At last, we depict the DBN structure of our
SMDM to analyze relations among variables.

3.1. Maneuvering in RTS Games. In RTS games, the maneu-
vering process of an agent consists of two levels: path
planning based on the grids and moving between adjacent
grids.

(a) Path Planning. No matter the agent is controlled by human
or computer, path planning returns a sequence of nodes from
the start point to the destination. But in a dynamic envi-
ronment, path planning is essentially a sequential decision
process: moving to an adjacent grid is a primitive action; the
agent selects an action based on the current destination and
situation. Obviously, the decision results may differ even in
the same situation, especially when the agent is controlled by
the human. Thus, a probabilistic model is needed to describe
the path planning.

(b) Moving between Adjacent Grids. After identifying the
oriented adjacent grid, the agent needs to move from the
current position to it. This process is totally controlled by an
engineering mechanism. Although the moving mechanisms
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FIGURE 1: An example of maneuvering process on a grid map.

may differ in different systems, they are certain and can be
known by the recognizer. Additionally, since the simulation
step is short, the agent usually cannot reach the oriented grid
in one step. In other words, the decision process is with a
semi-Markov property.

A classic example of maneuvering process on a grid map
in the RTS game is presented in Figure 1. Assume that an
agent is now on point X in grid C2 and wants to go to point Z
in A3. In the path planning level, the agent needs to choose a
grid among the five adjacent grids (B1, B2, B3, Cl, and C3).
In this example, the agent decides to go to grid B2. In the
moving level, the agent moves along the line from point X to
point S which is the center of grid B2. Because the simulation
step is a short time, the agent has to compute how long it
will take to reach point S according to the current speed.
Because the position of the agent is a continuous variable, it
is very unlikely that the agent just gets the grid center when
a simulation step ends. Thus, the duration of the moving is
usually computed by

duration — "pOSitionX - pOSitionS”

, 1
speed x T M

tep

where speed is a constant in the moving process and T, is
the real time of a simulation step. ||positiony — positiong]|
is the distance between point S and point X; duration is
computed by a floor operator. In this case, duration = 3. After
moving for 3 steps from position X, the agent will get position
Y and choose the next grid. This moving process will not be
intercepted except that the intention is changed.

3.2. Definition. A MDP models a discrete system, and it
assumes that the time between the decision epochs is
fixed. However, for the maneuvering process mentioned
in Section 3.1, the times of executing the same action are
not certain. Thus, we use the SMDP as the basis of our
formalization. However, there is no concept of the intention
in the SMDP. The SMDP only defines the states which
consist of all information needed for making a decision.
When the model is used for intention recognition, the states
should be further decomposed into inner states and external
states, which correspond to the intentions and situations of
the environment, respectively. The inner and external states
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determine selection of actions together. In the rest of the
paper, the state is only denoted as the situation. Our SMDM
at time ¢ consists of variables as follows:

(a) The intention variable 7'rt2 € II%, where II? = {1, L,
..., Iy}, is the set of possible intentions and N is the
number of possible intentions. In the maneuvering
process, each intention corresponds to a destination.

(b) The action variable 7} € ', II' = {a;,a,,...,ax},
is the set of possible actions and K is the number of

possible actions. In path planning, we usually have 8
actions corresponding to going to 8 adjacent grids.

(c) The state (situation of the environment) is presented
as the variable s, € S, and the state can be discrete or
continuous.

(d) The intention termination variable ef € {0,1} indi-
cates whether the current intention will be termi-
nated.

(e) The action termination variable etl € {0, 1} indicates
whether the current action will be terminated.

(f) The observation variable o, € O is a function of s,;
we can directly get its value by observing. o, = Null
means that the observation is missing.

(g) The duration variable d, € {0,1,2,...} is a nature
number which indicates the number of steps needed
to complete the current action.

Besides the above mentioned variables, the SMDM uses
functions and parameters to describe the behaviors of the
observed object and the system evolution.

(a) Observation function obs Sx0O0 — [0,1]is
plo, | s;), which defines the relations between the
observation and the real state.

(b) State transition function T : S x II' x § — [0,1] is
p(s; | s,_1,7m}), which indicates the probability that
the system state will transit to s, from s, ; after
executing T[tl.

(c) Policy of the observed agent is p(rrt1 | st_l,rrf),
which indicates the probability of selecting the action
n} when the previous state is s,_; and the current
intention is ﬂf.

(d) Distribution of the duration p(d, | s,_;, 7} ) gives the
probability that it will take d, steps to complete the
action 7z; when the previous state is s,_.

(e) Intention termination probability p(e! | s,,77)
defines the probability of terminating the current
intention ntz when the current state is s,.

(f) Intention transition probability p(ﬂt2 | ﬂf_l,st_l)
indicates the probability that the intention will transit
to 7Tt2 from ntz_l, when the previous state is s,_;.

(g) The initial distribution of intentions is presented by
SymbOI Pintent-

(h) The initial distribution of states is presented by sym-
bol pyae-
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In this paper, we directly get these parameters and
functions from the decision model in systems. However,
they can be learned by EM algorithm or other parameter
estimation algorithms. When all parameters are known, we
can infer the destination online by computing p(nf [ 01.4),
where 0, = {0y,0,,...,0,}.

3.3. The DBN Structure. The SMDM is essentially a dynamic
Bayesian network, and the DBN structure can depict all
casualties in the model. In this section, we first use some
subnetworks to explain how elements affect variables of the
intention, action, and the duration. Then, the full structure is
given.

Figure 2 depicts the subnetwork for the intention. In
Figure 2(a), the intention at time ¢ + 1 is determined by the
intention, the intention termination variable, and the state
at time ¢. Figures 2(b) and 2(c) show that if intention nf is
not terminated at time ¢ (ef = 0), we have nt2+1 = rttz; if
e} = 1, the agent selects 77;,, based on p(r7,, | 7,s,). In
the plan planning, it means that when the agent changes its
destination, it selects the next destination according to the
previous destination and the situation.

Figure 3 depicts the subnetwork for the action. In
Figure 3(a), the action at time t + 1 is determined by the
intention at time ¢ + 1, the intention termination variable,

the action, and the state at time ¢. Figures 3(b) and 3(c) show

that if action ntl is not terminated at time ¢t (et1 = 0), we

1 1
1 ++1 depends on

p(r},, | s, ). In the plan planning, it means that when
the agent finishes its action, it selects the next gird according
to the previous situation and the current destination.

have ., = tl; if et1 = 1, the selection of

Figure 4 depicts the subnetwork for the duration. In
Figure 4(a), the duration at time ¢ + 1 is determined by the
action at time t + 1, the duration, the intention termination
variable, and the state at time t. Figures 4(b) and 4(c) show
that if action 7, is not terminated at time ¢ (e} = 0), d,,; is
determined by d, according to p(d,,, | d,); ife; = 1, the
duration of 7z}, will be initialized by p(d, | s,_;,7}). In this
paper, p(d,., | d,) can be simply represented by d,,, = d, -1,
because the agent always moves with a certain result in the
simulation system. Other dependencies are as follows.

The intention termination variable e depends on 7} and
s, with p(e} | s,,7), which means that the agent changes
or keeps his destination based on the current situation. The
action termination variable e} depends on e} and d,. We have
e, = lifel = 1ord, = 0, which means the action is
terminated by two cases: it is completed or the destination
is changed. The state s, depends on 7} and s,_;, which is the
same as the state transition in the MDP.
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Figure 5 depicts the DBN structure of the SMDM in
two adjacent time slices. As is shown in the structure,
comparing to the SMDP, the SMDM ignores the reward
function and focuses on the policies. Additionally, it models
the intention separating from states. Comparing to AHMM-
CTP, the SMDM models the duration of the primitive action
explicitly, which is important to describe the maneuvering
process of the player in RTS games. Actually, since the SMDM
reflects the general characters of human behaviors, it can also
be used in other domains.

4. Inference

Inferring the destination of a maneuvering agent in RTS
games is to compute the distribution p(r? | o,,), which can
be got by either accurate inference or approximate inference.
For the complex DBN structure, computing p(n; | o;,)
accurately is time consuming and needs perfect observa-
tions. However, the system can only provide very limited

computation resources for destination recognizing, and the
observation is always partially missing because of the war fog.
Thus, we use the PF to infer the destinations approximately.

As a widely used state estimation method, the PF does
not restrict the type of the system noise and can be applied
in nonlinear and non-Gaussian dynamic systems. The PF
consists of two steps: sequential importance sampling (SIS)
and resampling. The idea of the SIS is to use weighted particles
to approximate the posterior distribution of the hidden state.
The computation complexity of this process is O(Np) (Np
is the number of particles), which means that the cost of
time only depends on the number of particles. Since the
computation resources are strictly limited in RTS games, the
number of particles is small. However, when the state space
is high-dimensional as that in the SMDM, the estimation
variance will be very high. To solve this problem, we apply
the RBPF to infer the destinations.

Comparing to the standard PF (SPF), the RBPF combines
the exact filtering and Monte Carlo sampling in the SIS
process (the SIS process of RBPF is also called RB-SIS). In the
RB-SIS, each particle consists of the Rao-Blackwellizing (RB)
variables and the posterior distributions of the uninstantiated
variables. The RB-SIS first samples the RB variables. Then,
the posterior distributions of the rest of the variables are
computed exactly based on the DBN structure. This exact
inference can be done by the HMM filter, junction tree
algorithm, or any other finite dimensional optimal filters. In
this paper, we exploit the link reversal method [5]. Since the
DBN structures of the AHMM and SMDM are deferent, the
exact inferring process of the SMDM also differs from that of
the AHMM.

In this paper, r, =
variables, where

{s;»d,,1,} are defined as the RB

2, ifef=1,

if ef =0, et1 =1, (2)
0, ife;=0, e =0.

Then, a particle in RB-SIS is defined as x, = {Pr(7} | d,,s,,

1L),Pr(m} | dy,s,1,), .. d,, 1} Before sampling the RB var-
iables, we need to decompose the network in a single time
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slice. We define B, = Pr(n;,n;,s,,d,.1,), B, = Pr(m},m; |
$»dp 1), and C, = Pr(s}, 7). Figure 6 depicts the DBN
structure of B, and C,.

The root node depicted in Figure 6 is a variable in C,,
which does not depend on any variables in B,. The initial root
is 77} if I,_; = 0; otherwise, the initial root is 7z;. Because C,
is not influenced by ef (k = 1,2), B, can be further factorized
by

2 1 2 1
Pr(rtt,ﬂt,st,dt,et,et)
2 1 2 1 2 1
:Pr(dt,et,et,st|ﬂt,nt)Pr(ﬂt,nt) (3)
2 1 2 1
=Pr(dt,et,et,stIrtt,nt)Ct.

At each step, we can get C, from the network in the
previous time slice. And the exact inference process at time
t can be decomposed into 2 steps: (a) sampling RB variables
from C, and Pr(d,,e},e},s, | 7,7)), getting B,, from Bj;
(b) transiting B,, to C,,,; and B,,,. In this paper, we use
the simplest sampling method in the RB-SIS. Thus, we do
not need to consider o, in the exact inference. The detailed
process of getting B, is as follows.

Find the root; if the root is 77, reverse the links in C,
and make them from down to top and compute Pr(r;}) and
Pr(s,) by formula (4) to formula (6); otherwise, we only need
to compute formula (6) and formula (7):

pr(m) =Y Ppr(m Im)Pe(m),

4

Pr(nflntl)ocPr(ntl|nf)Pr(rrt2), (5)
Pr(st):ZPr(stlntl)Pr(ntl), ©6)

Pr (ntl | st) oc Pr (st | ntl) Pr (ﬂtl) (7)

Sample s,, and compute Pr(r; | s,) by

Pr (ntz | st) = ZPr (7Tt2 | ntl)Pr (Tl’tl | st). )

1
4n

Reverse the link between 7'rt2 and 7'rt1 and make it from top to
bottom by

Pr (ntl | ﬂf,st) o« Pr (ntz | ﬂtl) Pr (rrtl | st). 9)
Compute the posterior probability Pr(e} | s,) by

Pr (ef | 51) = ZPr (ef | rrf) Pr (7‘[t2 | st). (10)

I
Sample e7, and reverse the links between 77 and e} by
Pr (ﬂtz | ef,st) o« Pr (ef [ ﬂf,st) Pr (ﬂt2 | st). (1)
Compute the posterior probability Pr(; | e;,s,) by

Pr (ntl | ef,st) = ZPr (ntl | ﬂf,st) Pr (ntz | st,ef). (12)
2

4

Reverse the link between 7Tt2 and ntl and make it from bottom
to top by

Pr (7'rt2 | ntl,st,etz) o« Pr (ntl | ntz,st) Pr (ﬂt2 | st,ef). (13)
Reverse the link between d, and 7; by

Pr (ﬂtl | d,, st,ef)
(14)
o Pr (dt | ntl,st,ef) Pr (ﬂtl | s, ef).

Compute Pr(d, | st,ef) by

Pr (dt | st,etz) = ZPr (dt | ntl) Pr (ntl | st,ef). (15)

1
s

Sample d, from Pr(d, | s,,e’), and compute Pr(r’ | s, e, d,)
by

Pr(ﬂt2 | st,ef,dt)
= ZPr (ﬂt2 | ntl,st,ef,dt) Pr (ntl | st,ef,dt). as)

1
Un

Since et2 and d, have been both instantiated, Pr(nt2 |
st,e?,dt) = Pr(rrt2 | s;,1,d,) and Pr(nt1 | dt,st,ef) = PI‘(T[tl |
d,, s, 1,). Then, sample e; from Pr(e; | d,, s, €), and get ,.
After getting B, , value of [, is known.

The next step is to get C,,; and B,,,. For C,,,, if[, = 0,
Cy = Pr(r[tzJr1 | 7Tt1+1) . Pr(rrtlﬂ), Pr(ﬂt2 | ﬂtl,st,ef) will
be regarded as Pr(n’,, | 7,,), and Pr(n} | d,,s, e}) will

also be inherited as Pr(r},,); if [, > 0 and C,,; = Pr(n},,

2 2 1 2 1 2
M) - Prmy, ), Pr(my,, | m,,) equals p(my,, | sy, ), and



Pr(n},)) = Pr(7i; | s;,¢;,d,) whene] = 0; Pr(r;,,) = p(m7,, |
ﬂf, s;) when ef =1

For B, ,, Pr(s,,; | m},,) is equal to p(s,,; | s, 7}, ,); other
factors are also known as the model parameters. In this way,
the ith particle x; .1 can be computed from x;

Since we use the simplest sampling and the observation
o, only depends on s,, the weight of x| can be updated by

wi = wi—l “Pr(o,|s,). (17)

After exploiting the RB-SIS, a resampling will be also used as
the standard PE The distribution of the possible destinations
at time ¢ is computed by

N
Pr (ntz | Ol:t) = Zw;Pr (7'rt2 | st,lt,dt). (18)

i=1
5. Experiments

5.1. Scenario. To evaluate the performances of the SMDM
and RBPF for recognizing the destination of the maneuvering
agent in RTS Games, we design a typical game scenario. In
this scenario, a vehicle is patrolling randomly on a grid-based
map. A soldier departs from an initial position and tries
to reach a destination. This scenario is quite common and
reflects the uncertainty and dynamics of games. Our goal is
to recognize the destination of the soldier with the observed
trace. The map is depicted in Figure 7.

The map contains 22 x 22 grids: the red diamond point
is the initial position of the soldier; the black grid indicates
buildings which the agent cannot get through; the four
green grids are possible destinations (from Destination 1 to
Destination 4); the white girds make up passable ways for
motion; the blue star is the initial position of the patrolling
vehicle; the blue dashed lines are possible patrolling ways for
the vehicle. In each step, the soldier moves for a distance in
the way explained in Section 3.1. We need to note that when
the soldier selects a grid, it tries to approach its destination
and gets far away from the patrolling vehicle at the same time.
Additionally, the soldier may change its destination on the
half way. For the patrolling vehicle, it reaches the center of one
adjacent grid which is on the possible way in one step. The
vehicle cannot turn around but can choose a direction with
equal probabilities when it reaches a cross. For simplification,
the soldier has no influence on the maneuvering of the
vehicle. This assumption is reasonable because the patrolling
vehicle only needs to report to the base in many cases.

5.2. Settings. To generate a test dataset automatically, we
design a decision model for the soldier. The policy of selecting
grids is as follows: U = {1,}"="* is a utility vector, where u;
is the utility of reaching the ith adjacent grid. If the soldier
cannot reach the ith grid in one step, u; = 0; otherwise,
u; = 1/(r;+0.1)-1/(r,+0.1), where r, is the shortest distance
between the center of the ith grid and the destination and r,
is the shortest distance between the center of the ith grid and
the patrolling vehicle. These two distances are computed by
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FIGURE 7: The grid-based map of the game scenario.

an A™ algorithm. Obviously, the soldier prefers to select a grid
with the large 7, and the small r,, but the decision result is
uncertain. We define that the ith adjacent grid will be selected
with a probability p;, which is computed by

exp (u;/T)
=, 19
P= ST exp (wT) )

where T' = 0.1 is the Boltzman temperature.

The soldier may change its destination on the half way.
p(e? | st,rrf) is defined as follows: if r, > 8, the current
destination will be changed with a probability 0.05 for any
ﬂf; otherwise, the destination will not be changed.

The accurate position of the soldier is not available. We
can only know the grid where the soldier is, and the observa-
tions are got sequentially. Additionally, 10% of observations
are missing in each trace.

The prior distribution of the four destinations is
[0.225,0.225,0.25,0.3]. The length of a side of the
grid is 1. The moving speed is 0.3 per step. We simplify
p(t? | m},,s,_y) as p(n} | m7,) in this scenario; the tran-
sition matrix is as in Table 1.

5.3. Results and Discussion. With the parameters provided in
Section 5.2, we generate a dataset consisting of 100 traces to
test the SMDM and RBPF automatically. To prove the effec-
tiveness of the SMDM, precision, recall, and F-measure of the
recognition results are three statistical metrics computed by
both the SMDM and AHMM-CTP. The AHMM-CTP can be
simply regarded as the SMDM without duration modeling. In
the AHMM-CTP, the action termination variable is always
1 and the agent needs to make a decision based on the
intention and situation in each step. Because the AHMM-
CTP cannot represent the maneuvering process in the RTS
game accurately, the weights of particles may all become zero
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TABLE 1: The transition matrix of the destinations.

2

2 U
i1 Destination 1 Destination 2 Destination 3 Destination 4
Destination 1 0 0.3 0.4
Destination 2 0.3 0.3 0.4
Destination 3 0.3 0 0.4
Destination 4 0.3 0.4 0

in some cases. To continue the inferring process of AHMM-
CTP, we will set all weights 1/Np forcedly when the weights
are all zero, where Np is the number of particles.

We use precision, recall, and F-measure to evaluate the
recognition performance. Their meanings and computation
details can be found in [25]. For the three metrics, the
value of them is between 0 and 1; a higher value means a
better performance. Since these metrics can only evaluate the
recognition results at a single step, and traces in the dataset
have different time lengths, we define a positive integer k €
[1,10]. The metric with k means that the corresponding

j=1:100

ti:[k*lengthj/lo]
is the length of the jth trace. Thus, metrics with different
k show the performances of algorithms in different phases
of simulation. Additionally, we regard the destination with
largest probability as the final recognition result. Figure 8
shows the precision, recall, and F-measure of the recognition
results computed by the SMDM and AHMM-CTP.

In Figure 8, it is obvious that the performance of the
SMDM is better when we have more observations. Specifi-
cally, all the three metrics of the SMDM exceed 0.85 when we
have observed the first half of traces. However, AHMM-CTP
does not perform well in all three metrics. The main reason
is that it does not model the duration of an action. Since the
soldier does not select grid in each step in our scenario, the
filtering process of the AHMM-CTP will fail in many traces.

To show detailed recognition results computed by the
SMDM and RBPE, select two traces in the dataset. In Trace A,
the real intention is Destination 3, and the soldier does not
change the destination on the half way. In Trace B, the real
intention is Destination 3 before ¢ = 9; then, the intention is
changed to Destination 4. The particle number is 1000, and
the probabilities of destinations of two traces in each step are
depicted in Figure 9.

In Trace A, the probability of the real destination
increases very fast; it nearly reaches 0.9 at t = 11 and keeps
very large until the end. In Trace B, the probability of the real
destination is the largest before t = 9. When the intention
is changed, the model responds very fast. We can also find
that the probability of Destination 4 is not the largest before
t = 18; the reason is that the soldier may move in the same
direction for all the three destinations in this period. Anyway;,
the probability of the real destination keeps the largest after
t=18.

We can get the results in Figure 9 by both the SPF and
RBPE. However, their variances of the results are not the same.

recognizing object set is {objec }, where length’

In this paper, we use the weighted variance to compare the
performances of the SPF and RBPF. The weighted variance at
time ¢ is computed by

Var, = Yul (d -d,) (di - d,)", (20)
i=1

i

where w] is the weight of the particle x., d, is the estimated
distribution of destinations, and d. is the distribution of
destinations in x]. In the RBPE d. is continuous four-
dimension vector. But in the SPF, since destinations in SPF
are instantiated, only one element in d, is one and others are
zeros. Figure 10 depicts the weighed variances of the results
in Figures 9(a) and 9(b), respectively.

The difference between red solid line and the blue dashed
line is that the former exploits 1000 particles and the latter
exploits 500 particles. Figures 10(a) and 10(b) both show that
the variance of the SPF is very high and it converges much
slower than that of the RBPE. Additionally, the number of
particles is not sensitive to the variances of the RBPE. It can get
good performance with a few particles. To further compare
the computation efficiency of the RBPF and SPF, their cost
of time with different numbers of particles is also shown in
Figure 11.

The program is written in Matlab script and is run in
our computer which has a Pentium E5500 CPU (2.8 GHz)
and 2 GB memory. The red solid line and black dashed line
represent the cost of time of the RBPF and SPE, respectively.
We can find that their cost of time will increase linearly
with the number of particles. The RBPF costs time less than
twice as much as that of the SPF when the numbers of
particles are the same. However, we need to note that time
of RBPF with 500 particles is less than that of SPF with
1000 particles. Combining with variance in Figure 10, we can
conclude that the RBPF can get smaller variances than the
SPF and consumes less time than the SPF at the same time.

When Np < 500, since the particles are not enough, both
the SPF and RBPF may fail with a large probability. We run
our dataset by the RBPF and SPF for 20 times, and average
failure rates with different numbers of particles are shown in
Table 2.

Obviously, the average failure rates of the RBPF are lower
than those of the SPE The main reason is that the destination
distribution is continuous in the RBPE, and the probabilities
may be very small but usually are not zeros. Thus, fewer of
particles in the RBPF have zero weights.
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FIGURE 8: Three metrics of the recognition results computed by the SMDM and AHMM-CTP, the red solid and blue dashed lines are computed
by the SMDM and AHMM-CTP, respectively.
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FIGURE 9: The probabilities of destinations of two traces at each step, the red solid, green dashed, blue dotted, and black dash-dotted lines are
probabilities of destinations from 1 to 4, respectively.
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TABLE 2: The average failure rates with different numbers of particles.
Number of particles 50 100 200 300 400
Average failure rates of the RBPF 23.70% 13.50% 7.20% 4.45% 3.15%
Average failure rates of the SPF 3115% 16.75% 8.25% 5.35% 4.30%
1 T . . . T . 1 T T T T T .
00k o 0.9 b oo
08 b 081
0.7 Fr s e 0T e T
8 0.6 - . . . . 7 7 7 7 7 7 ) | 5 0.6 = .... 7 7 R 7 7 ) ) ) ) ) |
S = . ; 5,
S 05 b B0 : G : : .
T P
. t . . . -] 03 L 7 - 7 - 7 7 . ) . ) o
| 0.0 AL AT
" . . 0 M AT f\{\—’/‘\«,’; H M
20 25 30 10 20 30 40 50 60

—«— RBPF-1000
-»- RBPF-500
<%~ SPF-1000

(a) Trace A

t

—— RBPF-1000
-=- RBPF-500
%~ SPF-1000

(b) Trace B

FIGURE 10: The variances of recognition results of two traces at each step, the red solid line and the blue dashed line are both computed by
the RBPE. The black dotted line is computed by the SPF with 1000 particles.
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FIGURE 11: The cost of time by the RBPF and SPF with different
numbers of particles.

6. Conclusion and Future Works

In this paper, we propose a semi-Markov decision model
(SMDM) to recognize the destination of a maneuvering
agent in RTS games. To decline the estimation variance, the
RBPF is used to compute the distribution of the destination
online. The results show that the SMDM can recognize the
destination efficiently no matter the intention changes or
not, and it performs better than the AHMM-CTP in terms
of precision, recall, and F-measure. When the number of
particles is large, the RBPF can get results with smaller

variance and cost less time than the SPF; when the number of
particles is not enough, the average failure rates of the RBPF
are lower than those of the SPE.

In the future work, we plan to use the optimal sampling
and compare the computation efficiency of link reversal and
other exact inferring methods in the RB-SIS. Additionally,
we are also interested to apply another recent family of
hidden semi-Markov models with finite set of durations for
recognizing destinations, which may allow fast exact filtering
in our scenario [31].
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