87 research outputs found

    Direct Observation of Martensitic Phase-Transformation Dynamics in Iron by 4D Single-Pulse Electron Microscopy

    Get PDF
    The in situ martensitic phase transformation of iron, a complex solid-state transition involving collective atomic displacement and interface movement, is studied in real time by means of four-dimensional (4D) electron microscopy. The iron nanofilm specimen is heated at a maximum rate of ∼10^(11) K/s by a single heating pulse, and the evolution of the phase transformation from body-centered cubic to face-centered cubic crystal structure is followed by means of single-pulse, selected-area diffraction and real-space imaging. Two distinct components are revealed in the evolution of the crystal structure. The first, on the nanosecond time scale, is a direct martensitic transformation, which proceeds in regions heated into the temperature range of stability of the fcc phase, 1185−1667 K. The second, on the microsecond time scale, represents an indirect process for the hottest central zone of laser heating, where the temperature is initially above 1667 K and cooling is the rate-determining step. The mechanism of the direct transformation involves two steps, that of (barrier-crossing) nucleation on the reported nanosecond time scale, followed by a rapid grain growth typically in ∼100 ps for 10 nm crystallites

    Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions

    Full text link
    Laser-plasma interaction experiments have been carried out on the OMEGA laser system [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] under plasma conditions representative of the peak of a 1.5 MJ direct-drive laser pulse proposed for the National Ignition Facility (NIF). Plasmas have been formed by exploding 18–20 μm thick CH foils and by irradiating solid CH targets from one side, using up to 20 kJ of laser energy with phase plates installed on all beams. These plasmas and the NIF plasmas are predicted to have electron temperatures of 4 keV and density scale lengths close to 0.75 mm at the peak of the laser pulse. The electron temperature and density of the exploding-foil plasmas have been diagnosed using time-resolved x-ray spectroscopy and stimulated Raman scattering, respectively, and are consistent with predictions of the two-dimensional Eulerian hydrodynamics code SAGE [R. S. Craxton and R. L. McCrory, J. Appl. Phys. 56, 108 (1984)]. When the solid-target or exploding-foil plasmas were irradiated with an f/6f/6 interaction beam at 1.5×1015 W/cm2,1.5×1015W/cm2, well above the NIF f/8f/8 cluster intensity of ∼ 2×1014 W/cm2,∼2×1014W/cm2, stimulated Brillouin backscattering (SBS) was found to be completely inhibited. A conservative upper limit of direct-backscattered SRS was found to be ∼5% from the solid targets. SRS and SBS are thus unlikely to have a significant impact on target performance at the peak of the NIF direct-drive laser pulse. © 1999 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70094/2/PHPAEN-6-5-2072-1.pd

    Demonstration of Fuel Hot-Spot Pressure in Excess of 50 Gbar for Direct-Drive, Layered Deuterium-Tritium Implosions on OMEGA

    Get PDF
    A record fuel hot-spot pressure P[subscript hs] = 56±7  Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium–tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, LM15119ER (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.United States. Department of Energy (DE-NA0001944
    corecore