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Abstract 
Solid state experiments at extreme pressures (10-100 GPa) and strain rates (~106–108s-1) 
are being developed on high-energy laser facilities, and offer the possibility for exploring 

new regimes of materials science.  These extreme solid-state conditions can be accessed 
with either shock loading or with a quasi-isentropic ramped pressure drive.  Velocity 

interferometer measurements establish the high pressure conditions.  Constitutive models 

for solid-state strength under these conditions are tested by comparing 2D continuum 
simulations with experiments measuring perturbation growth due to the Rayleigh-Taylor 

instability in solid-state samples.  Lattice compression, phase, and temperature are 
deduced from extended x-ray absorption fine structure (EXAFS) measurements, from 

which the shock-induced α−ω phase transition in Ti and the α−ε phase transition in Fe  

are inferred to occur on sub-nanosec time scales. Time resolved lattice response and 

phase can also be measured with dynamic x-ray diffraction measurements, where the 
elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (< 1 

ns).  Subsequent large-scale molecular dynamcis (MD) simulations elucidate the 

microscopic dynamics that underlie the 3D lattice relaxation.  Deformation mechanisms 
are identified by examining the residual microstructure in recovered samples.  The slip-

twinning threshold in single-crystal Cu shocked along the [001] direction is shown to 
occur at shock strengths of ~20 GPa, whereas the corresponding transition for Cu 

shocked along the [134] direction occurs at higher shock strengths.  This slip-twinning 

threshold also depends on the stacking fault energy (SFE), being lower for low SFE 
materials.  Designs have been developed for achieving much higher pressures, P > 1000 

GPa, in the solid state on the National Ignition Facility (NIF) laser.  
*This work was performed under the auspices of the U.S. Department of Energy by the 

University of California, Lawrence Livermore National Laboratory under Contract No. 

W-7405-Eng-48.  UCRL-JC-152288-ABS. 
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I.  Introduction 

Over the past decade, there has been a surge of activity in the field called extreme 

materials science or high energy density (HED) materials science.  This refers to work 

being done on HED facilities, such as high energy lasers and magnetic pinch facilities to 

accesss conditions of extreme pressure, compression, and strain rate (P, ρ/ρ0, dε/dt), and 

make time resolved measurements of the properties. [Asay, 1997; Meyers, 2003; 

Remington, 2004]  One of the long range goals of our work, aimed at the National 

Ignition Facility (NIF) laser, is to develop the ability to experimentally test models of 

high pressure, high strain rate material strength, at pressures significantly higher than is 

achievable by conventional means.  This will require achieving the high pressure, solid 

state conditions, and diagnosing all of the key material quantities.  There are a number of 

challenges to overcome to achieve this goal.  Achieving extreme pressures (P >> 1 Mbar) 

in the solid state is very difficult, all by itself.  Extreme pressures can only be generated 

in small samples, 10-100 µm thick, and can only be maintained for very brief intervals, a 

few tens of nanoseconds.  Yet the pressures have to be applied gently enough in a ramped 

load that the sample does not shock, because strong shocks generate high temperatures 

that would melt the sample.  Once the extreme pressures are reached, they can only be 

held for ~10 nsec, during which we need to measure (or at least test models of) strength, 

and all the quantities that affect it, such as compression, temperature, strain rate, phase, 

and ultimately dislocation density.  In this article, we review our progress towards this 

overarching goal.   

In Sec. II, we review several standard constitutive models for high – (P, dε/dt) 

strength, and in Sec. III we describe the “drive” (ie, applied pressure versus time).  In 
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Sec. IV we describe the Rayleigh-Taylor instability experiments being developed to test 

high pressure models of material strength.  The polycrystalline lattice diagnostic of 

dynamic EXAFS is discussed in Sec. V, and the single-crystal lattice diagnostic of 

dynamic diffraction is described in Sec. VI.  We conclude in Sec. VII with remarks about 

potential dynamic experiments at extremely high pressures that are being designed for the 

NIF laser. 

 

II.  Constitutive Models 

There is a considerable variety of constitutive models for material strength in 

common use in the material dynamics community.  Models such as the Johnson-Cook, 

[9] Zerilli-Armstrong, [Zerilli, 1987; 1990] Mechanical Threshold Stress (MTS), 

[Follansbee, 1988] thermal-activation-phonon-drag, [Hoge, 1977; Regazzoni, 1987] 

Steinberg-Lund, [Steinberg, 1989] Steinberg-Guinan, [Steinberg, 1980] and Preston-

Tonks-Wallace [Preston 2003] models are widely, for example.  At the high strain rates 

relevant to the work described in this paper, thermal activation and dislocation glide 

along slip planes, resisted by phonon drag, are believed to be the dominant (rate 

determining) mechanisms underlying deformation. [Kochs, 1975; Hoge, 1977; 

Regazzoni, 1987; Steinberg, 1989]  These are illustrated schematically in Fig. 1a.  In the 

thermal activation regime, when a shear stress is applied, dislocations are assumed to be 

pinned against barriers, until a thermal fluctuation can kick them over the obstacle to 

glide to the next barrier.  In this "jerky glide" regime, [Regazzoni, 1987] the strain rate is 

given by Orowan's equation, ˙ ! = "
m

bu , where 

! 

u = "b /(tw + t g )  is the average dislocation 

velocity, λb is the average distance between barriers, tw is the time spent waiting for a 
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thermal assist, and tg is the time interval to freely glide to the next barrier.  When the 

dislocations are freely gliding between obstacles at velocity ug, an equilibrium drag 

equation gives 

! 

"b= Dug , where 

! 

ug = " b /t g , σ is the applied deviatoric stress, b is the 

Burgers vector, and D is the phonon drag coefficient.  These two mechanisms can be 

combined to give a constitutive equation of the form, 
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Here, F0 represents the energy required to push the dislocation over the barrier at T = 0 K, 

τMTS corresponds to the mechanical threshold stress, (the stress at T = 0 K required to 

surmount the peak of the barrier), and p and q represent barrier shape parameters. [Kochs, 

1975] 

The above discussion assumes rigid dislocations that are undistorted in surmounting a 

barrier.  This assumption is not appropriate for the strong Peierls barriers, σP, of a bcc 

lattice.  In surmounting σP in a bcc lattice, the dislocation bows considerably, nucleating 

and propagating a pair of dislocation kinks. [Guyot, 1967]  A similar constitutive 

equation appropriate for a bcc lattice, the Hoge-Mukherjee model, can be written as 

[Hoge, 1977]  
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where 

! 

1/ ˙ " 0 = 2w
2

/(La#) .  Here, L is the dislocation line length, w the width of the 

critical pair of kinks, ν the Debye frequency, a the separaton between Peierls valleys, and 

2Uk the energy to form a pair of kinks in the dislocation segment.  Note the similarity to 

Eq. 1 if p=1 and q=2 (in Eq. 1).  

An alternate constitutive equation that explicitly includes pressure, temperature, 

and compression, proposed for extremely high strain rates, is the Steinberg-Guinan 

model. [Steinberg, 1980]  The basis for this model is the assumption that above some 

critical strain rate, ~105 s-1, all effects due to strain rate have saturated, and material 

strength becomes independent of strain rate.  The only parameters that effect strength in 

this model are P, T, η=ρ/ρ0, and strain, ε.  The model is essentially a first order Taylor 

expansion in pressure and temperature, with a work hardening prefactor, f(ε), and a small 

correction for compression, 
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  f (!) = [1 + "(! i + !)]
n   ,    (Eq. 3c) 

 

where σ0 and G0 are the ambient strength and shear modulus, η = ρ/ρ0 is the compression, 

! 

G
P

'
= "G /"P , and 

! 

G
T

'
="G /"T  are the partial derivatives of shear modulus with pressure 

and temperature.   It is assumed that the rate of change of strength with P and T is the 

same as that of the shear modulus, G, an assumption that remains unproven at extreme 

conditions, due to lack of controlled data. 
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The Steinberg-Lund (S-L) model [Steinberg, 1989] is a combination of the two 

models just described, and is written 
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where the thermally activated term,
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and is assumed applicable only when σ ≤ σP.  Here, m = 1 corresponds to the standard 

Steinberg-Lund (S-L) model; other values are discussed below.  In its nominal form, the 

S-L model assumes that 

! 

" #" A f ($)G /G0 ,  when σ > σP, which is essentially Eq. 3a, the 

Steinberg-Guinan, strain-rate-independent model.  Note that this essentially prevents 

phonon drag from being activated.  Note also that Eq. 4b is identical with the Hoge-

Mukherjee model, Eq. 2, provided that 

! 

C
1

= "
m
Lab

2
# /(2w

2
) = ˙ $ 

0
, and C2 = D/(ρmb2), and 

m = 1.  In Eq. 4, σA, C1, Uk, σP, C2 are all assumed to be constants, and the scaling with P 

and T is taken into account with the G/G0 overall factor in Eq. 4a.  We can easily write 

down a “hybrid” form of the S-L model.  If, when σ > σP, the exponential term in the 

denominator of Eq. 4b is set to zero, and if the phonon drag term is allowed to activate, 

this would be similar to the Hoge-Mukherjee model, only with work hardening and 

pressure hardening (through scaling with the shear modulus) included.   
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The final model that we describe is the Preston-Tonks-Wallace (PTW) model. 

[Preston 2003].  In a somewhat simplified form and for low strains, it is written here, , as 

 

! 

"PTW ( ˙ # ) = (2G) max{y0 $ (y0 $ y% )erf[& ˆ T ln('˙ # 0 / ˙ # )], s0( ˙ # / '˙ # 0)( }  ,     (Eq. 5) 

 

where, y0, y∞, κ, γ, s0, and β are material constants, and G is the pressure and temperature 

dependent shear modulus.  This model is based on the same mechanisms as the Hoge-

Mukherjee or hybrid S-L models above, namely, thermal activation for shear stresses 

lower than the dominant dislocation barriers, and a viscous drag mechanism for shear 

stresses above the barriers.  At strain rates dε/dt ≤ 104, the model is calibrated against 

Hopkinson bar data and other conventional data. At strain rates dε/dt > ~109 s-1, the 

model is formulated to reproduce overdriven (strong) shock data, with strength assumed 

to vary as a power law with strain rate, namely, σ ~ (dε/dt)β, with  β ≈ 1/4.  In the absence 

of additional data, the region inbetween, “the gap”, is bridged by extrapolating the 

strength curves from these two regimes (thermal activation on the low end, nonlinear 

drag on the high end) until they meet.  Once “gap data” is obtained, it is expected that the 

PTW model (or at least its nominal input parameters) will be modified accordingly. 

 We illustrate these models, as a function of strain rate, for one set of conditions 

(Ta at P = 0.5 Mbar, T = 500 K, and ε = 0.1) in Fig. 1b.  The dot-dashed curve labeled 

(1b) corresponds to the nominal S-L model with its nominal input parameters for Ta. 

[Steinberg, 1989]  The dot-dashed curve labeled (1a) corresponds to the hybrid S-L 

model, again with nominal Ta input parameters.  This latter result is very similar to the 

curve that would correspond to the Hoge-Mukherjee model, other than the modification 
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for work and pressure hardening.  Curves (1a) and (1b) coincide in the thermal activation 

regime, that is, for dε/dt < a few x 105 s-1.  Above this strain rate, however, the nominal S-

L model transitions essentially to the S-G model, which is strain rate independent, given 

by curve (1b).  The hybrid S-L model, (and also Hoge-Mukherjee), however, allow linear 

phonon drag to activate, and the strength increases steeply with strain rate, σ ~ dε/dt.  

Due to the paucity of strength data at these high strain rates, it is unknown which of these 

two formulations is correct, if either.  The solid curve, labeled (3) corresponds to the 

PTW model, with nominal input parameters for Ta.  In the low strain rate regime, dε/dt < 

~105 s-1, PTW also agrees with the S-L model.  This is not surprising, since both models 

were “calibrated” against the same Hopkinson bar data.  With nominal input parameters 

for Ta, the PTW model transitions to phonon drag at a higher strain rate, ~108 s-1.  So 

above 108 s-1, the PTW model transitions to a “nonlinear phonon drag” model, with a 

softer dependence on strain rate, σ ~ (dε/dt)1/4, based on overdriven shock data.  The 

hybrid S-L model is shown by curve (2a), in which the attempt frequency, 

! 

˙ " 
0
, has been 

increased by ~100x, the Peierls stress has been scaled by G(P,T), and the phonon drag 

power law exponent has been set to m = 4.  It is apparent that under these settings, the 

hybrid S-L model is consistent with the PTW model over essentially the entire strain rate 

range.  Curve (2b) shows an intermediate version of S-L, in which the attempt frequency 

has been increased by a factor of ~40, phonon drag has been turned off entirely, and the 

Peierls stress has been scaled by G(P,T).  Conversely, if the attempt frequency in the 

PTW model is decreased by a factor of ~1000 (by reducing the parameter gamma), the 

activation energy increased (by increasing kappa), and the phonon drag power law 
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exponent (β) increased to ~1, then the PTW model curve (not shown) can be made 

roughly consistent with the Hoge-Mukherjee curve (1a) in Fig. 1b. 

 We show the sensitivity of the PTW model to temperature in Fig. 1c for nominal 

input parameters for Ta, and starting parameters of 0.5 Mbar pressure, compression ρ/ρ0 

= 1.1, and plastic strain of ε = 0.1, and nominal temperature of T0 = 500 K.  The flow 

stress versus strain rate is shown, as temperature is increased and decreased by 20% and 

40% about its nominal value.  The thermal activation regime, here corresponding to dε/dt 

< a few x 108 s-1, shows sensitivity to these levels of changes in temperature, but the 

phonon drag regime is rather insensitive to these levels of changes in temperature.  The 

input parameters to the PTW model, including those for phonon drag, are assumed 

constant.  The phonon drag coefficient should in fact scale as D ~ (ρ/ρ0)2/3 T1/2, due to the 

density of states of the phonon distribution. [Wolfer, 2003; Remington, 2004]  This still 

would leave the phonon drag regime reasonably insensitive to 20-40% variations in 

temperature.  Figure 1d shows a similar scaling, only for 20-40% variations in density.  

Here, there is little sensitivity in either deformation regime, within the model, due in part, 

to the assumption of constant input parameters.  Hence, in experiments of high pressure, 

high strain rate material strength, the sensitivity to the exact EOS of the material is not 

large, and resides in the corresponding temperature uncertainties that could result. 

 

III.  Shockless Drive Development  

In this section, we discuss the results of an experimental technique for generating 

a very high pressure “drive” to compress samples in the solid state at high strain rate.  

This technique has already been experimentally demonstrated up to peak pressures of 200 
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GPa (2 Mbar) at the Omega laser. [Lorenz, 2005b]  Furthermore, radiation-

hydrodynamics simulations show that on future facilities, such as the NIF laser, [Paisner, 

1994; Hogan, 2001] this technique should be able to drive samples in the solid state to 

much higher pressures, P > 103 GPa (10 Mbar). [Remington, 2005b] 

We show in Fig. 2 results from this ramped pressure, shockless drive [Edwards, 

2004; Lorenz 2005] that has been developed on the Omega laser. [Boehlyt, 1995]  The 

target consists of a low Z, low density reservoir (typically solid density plastic) of 

nominal thickness ~0.2 mm, followed by a ~0.3 mm vacuum gap, then an Al sample, as 

illustrated schematically in Fig. 2a.  A laser pulse of energy 0.2 – 2 kJ in a temporally 

square pulse shape of duration 3 – 4 ns is used to drive a strong shock through the low-Z 

reservoir.  When the shock reaches the back side (the side opposite where the laser was 

incident), the reservoir “explodes” (unloads) into vacuum as a gas of “ejecta”.  The 

pressure that is applied to the sample results from the increasing ram 

pressure,

! 

Pram = "ejectavejecta
2 , which increases smoothly and monotonically in time as the 

reservoir unloads, until the reservoir material is depleted. This technique for generating 

shockless compression was modeled after the early work of Barnes using high explosives 

(HE) as the source of the shock in the reservoir. [Barnes, 1974; 1980] 

The pressure wave is measured with a line velocity interferometer [Celliers, 1998] 

viewing the back side of a 5-30 µm flat Al sample, typically through a LiF window.  An 

example VISAR image, corresponding to a 5 µm Al sample backed by a ~125 µm LiF 

window, where Pmax ~ 1.2 Mbar, is shown in Fig. 2b. [Lorenz, 2005b]  The horizontal 

direction of the image is the “streak” or time direction, and the vertical direction 

corresponds to the transverse position along the sample.  The interference fringes in the 
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velocity interferometer diagnostic are proportional to velocity, with each fringe shift, 

δ(fringe position), corresponding to a known velocity increment, δv.  Thus, measuring 

the fringe shift versus time and position on the foil is a direct measure of the velocity of 

the reflecting surface or interface, if a LiF window is used.  As this ramp wave moves 

through the Al, it eventually steepens into a shock, as illustrated experimentally and 

numerically in Fig. 2c.  The grays symbols are the experimental data, adn the solid curve 

are radiation-hydrodynamics continuum code simulations.  Here, a set of four identical 

laser shots were done at the Omega laser, each at Pmax ~ 1.2 Mbar, where the only 

difference was the Al thickness, which varied over 5 – 33 µm.  By the time this 1 Mbar 

ramp wave has moved through ~30 µm of Al, it has steepened into a shock.   

 The measured velocity profiles can be back integrated to infer the applied 

pressure vs. time at the front surface of the Al sample, using a technique developed by 

Hayes. [24]  We show in Fig. 2d the results from five different experiments, varying 

mainly the laser intensity, leading to peak pressures spanning 0.15 – 2 Mbar.  As the peak 

pressure increases, the pressure rise time decreases.  Nevertheless, even at 2 Mbar, with a 

~3 ns rise time, the sample is not shocked, at least over the first 10-20 µm of Al.  

[Lorenz, 2005b] 

 

IV.  Material Strength at High Pressure and Strain Rate 

 To dynamically infer material strength at high (P, dε/dt), hydrodynamic instability 

experiments have been developed, [Kalantar, 1999; 2000; Colvin, 2003; Lorenz, 2005a; 

Remington, 2005a] following the technique demonstrated in the early work by Barnes. 

[Barnes, 1974; 1980]  By accelerating a metal sample or payload with a lower density, 
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higher pressure "pusher", a situation is created where the interface with the payload is 

hydrodynamically unstable to the Rayleigh-Taylor (RT) instability.  Any pre-existing 

perturbations will attempt to grow, whereas material strength will act to counter or slow 

this growth.  Therefore, by measuring the RT growth of machined sinusoidal ripples in 

metal foils that are accelerated by the drive, and comparing the observed perturbation 

growth with that from simulations including a constitutive (strength) model, material 

strength at high pressure and strain rate may be inferred.   

The technique we are developing to test models of high pressure, dynamic 

strength (such as represented by Eqs. 1-5) is to measure the RT-induced growth of ripples 

with time-resolved face-on radiography, as illustrated schematically in Fig. 3a.  We use 

the ramped pressure drive discussed in Fig. 2 to generate both high pressure conditions in 

the sample of interest, and to accelerate the sample.  Preimposed ripples on the side of the 

metal sample facing the reservoir then are induced to grow due to the RT instability, that 

is, the RT instability exerts a shear stress on the sample, which tries to generate plastic 

flow from the thin regions or valleys of the perturbations (RT “bubbles”) to the thick 

regions or peaks of the perturbations (RT “spikes”).  The material strength at the 

generated high pressures attempts to resist this plastic flow.  Hence, the rate at which the 

ripples grow is sensitive to the material strength; the stronger the material, the lower the 

expected RT growth rate.  Comparing 2D hydrodynamic simulations, including a strength 

model, with the observed RT growth rates, then allows the model to be tested, and the 

high pressure strength to be deduced.  

Figure 3b shows results from such an RT experiment, in this case, for Al6061-T6 

foils at Pmax ~ 200 kbar.  The data for perturbation growth factor versus time are given by 
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the plotting symbols, and the results of the 2D simulations, using the Steinberg-Guinan 

strength model (Eq. 4) are given by the solid curves.  The pressure hardening parameter,  

! 

A =
1

G
0

"G

"P
,  is varied in the model until the simulations reproduce the observations.  At 

peak pressure, then, the deduced strength from the best fit simulation, is 10.5 kbar, at Pmax 

~ 200 kbar and peak strain rate of ~6 x 106 s-1.  [Lorenz, 2005a]  Using the simulation that 

reproduced the experimentally observed RT growth shown in Fig. 3b, we then show in 

Fig. 4 the time histories of pressure (Fig. 4a), temperature (Fig. 4b), equivalent plastic 

strain (Fig. 4c), and flow stress (Fig. 4d).  The results have been volumetrically averaged 

with e-kz weighting (where k = 2π/λ corresponds to the perturbation wave number).  This 

particular weighting is based on the recognition that the strength that matters is that in the 

vicinity of the growing ripples.  Since RT induced ripples penetrate the foil a distance of 

order e-kz, where k = 2π/λ is the perturbation wave number, we have used e-kz weighting in 

the averages shown in all the plots in Fig. 4.  The average peak pressure (Fig. 4a) was 

~200 kbar with a ~6 ns rise time.  The temperature starts out a room temperature, and 

increases to a peak value of ~400 K.  The equivalent plastic strain from the simulation is 

shown in Fig. 4c, and asymptotically reaches εp ~ 0.2.  By looking at the average values 

of the slope at various time intervals, average plastic strain rates can be estimated.  Early 

in time (40-55 ns), the average strain rate is <dεp/dt> ~ 6 x 106 s-1.  At later times, 55-70 

ns, as the applied pressure drops off, the strain rate also decreases, <dεp/dt> ~ 3 x 106 s-1.  

At still later times, 70-90 ns, the strain rate approaches <dεp/dt> ~ 1 x 106 s-1.  The 

volume averaged strength is shown in Fig. 4d.  The peak value is 10.5 kbar, which is a 

factor of 10.5/2.9 ~ 3.5 larger than the strength at ambient conditions, due largely to the 
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pressure hardening effect.  This is the approach we are pursuing to test high pressure, 

high-strain-rate models of material strength, and extremely high pressures.  

 

V. Dynamic EXAFS experiments 

 We now discuss a time-resolved microscale diagnostic developed to probe the 

local (short range) lattice response, namely, dynamic EXAFS (extended x-ray absorption 

fine structure).  This EXAFS technique probes the lattice short range order, and works 

both with polycrystalline or single crystal samples, and offers the potential to infer phase, 

compression, and temperature of the loaded sample, with sub-nsec time resolultion.  The 

basis for this diagnostic is illustrated in Fig. 5a. [Konningsberger, 1988; Lee, 1981; Rehr, 

2000]  When an atom absorbs an ionizing, high energy x-ray, an electron rises from a 

bound state into the continuum.  The outgoing wave packet of the free electron, 

illustrated by the concentric solid circles in Fig. 5a, scatters off of neighboring atoms, as 

illustrated by the dashed circular curves.  The outgoing and reflected waves interfere with 

each other.  The square of the total electron wave function is what determines the 

probability of the process, and this interference is therefore observed in fine structure in 

the x-ray absorption just above an opacity edge.  For K-edge absorption, the standard 

EXAFS equation can be written, in terms of the normalized absorption probability, as 

[Konningsberger, 1988; Yaakobi, 2003; 2004a; 2004b] 

 

! 

"(k) = # j

N j

kR j

2 Fj(k)sin{2kR j + $ j(k)}e
%2& j

2k 2

e
%2R j /'( k )  ,  (9) 
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where χ(k) = [µ(k) - µ0(k)] / µ0(k), and µ0(k) represents the smooth absorption above the 

edge corresponding to an isolated atom (no interference modulations).   The summation is 

over coordination shells, Nj is the number of atoms in the shell, and Rj its radius.  The 

Fj(k) factor corresponds to the backscattering amplitude for the electron wave function 

reflected from the jth coordination shell. The φj(k) represents a phase shift due to the 

electron wave packet moving through a varying potential.  The exponential, e!2" j
2
k
2

, 

represents the Debye-Waller factor, which reduces the coherent interference of the 

EXAFS signal due to thermal fluctuations in the local scattering atoms.  The 

! 

e
"2R j /#( k ) 

factor represents the attenuation of the electron wave function due to the finite mean free 

path, λ(k), of the ejected electron. 

We have developed the time-resolved EXAFS diagnostic technique at the Omega 

laser. [Yaakobi, 2003; 2004a; 2004b]  The experimental setup is shown in Fig. 5b.  Three 

1-ns-square laser beams stacked back to back to make a 3-ns-square drive pulse are used 

to shock compress the sample being studied.  In Fig. 5b, this corresponds to a 10 µm 

thick sample of polycrystalline Ti embedded in 17 µm thick CH on either side, and the 

remaining 57 beams implode an inertial confinement fusion (ICF) capsule.  This 

implosion generates a short (~120 ps) burst of smoothly varying hard x-rays, I = I0 exp(-

Ex/T), to be used for the EXAFS absorption, as shown in Fig. 5c.  Typical values for the 

implosion x-ray spectrum are I0 = 2-3 x 1019 keV/keV and T = 1.25 keV. A measured raw 

EXAFS absorption spectrum showing the modulations just above the K-edge for room 

temperature, unshocked polycrystalline Ti is shown in Fig. 5d.  [Yaakobi, 2003] 

EXAFS measurements from shocked polycrystalline vanadium at Pshk ~ 400 kbar, 

together with EXAFS theoretical fits, using the FEFF8 code, [Rehr, 2000; Yaakobi, 
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2004a; 2004b] are shown in Fig. 6a.  Vanadium was picked as a good reference material, 

since it is not expected to undergo any phase transition at shock pressures < ~1 Mbar.  

The fits of the shocked V EXAFS data with the FEFF8 code shown in Fig. 6a are very 

good, and suggest a compression of ~15% and shock temperature of ~800 K.  Both the 

shock compression and shock temperature thus inferred are in good agreement with 

predictions with radiation-hydrodynamics code simulations using the LASNEX code. 

[Zimmerman, 1975] 

Having established the technique of dynamic EXAFS to diagnose shocked 

samples with sub-nsec time resolution, we then applied the technique to shocked 

polycrystalline Ti, at the same Pshk ~ 400 kbar, as shown in Fig. 6b.  In this case, the 

situation is distinctly different from the shocked V.  If we assume that the shock 

temperature is the same as for shocked V, and fit the FEFF8 simulation to reproduce the 

modulation period, assuming no phase transition, the result is shown in green.  This fit is 

clearly unsatisfactory, and suggests this interpretation cannot be correct.  If we again 

assume no phase transition, but arbitrarily increase the temperature until the theoretical 

curve fits the data, the resulting temperature is T ~2100 K.  This temperature is over a 

factor of two higher than predicted with the LASNEX simulations, and in distinct 

disagreement with the temperatures inferred from the shocked V at the same shock 

strength.  We concluded that such a high temperature is unphysical.  If, on the other hand, 

the shocked Ti has undergone the α – ω phase transition, as expected for these pressures, 

and assuming the nominal shock temperatures from the radiation-hydrodynamics 

simulations of T ~900 K, the result is shown by the red curve in Fig. 6b.  The agreement 

with the data is excellent, and we therefore conclude that this is the most likely 



 18 

interpretation.  We thus conclude that, at Pshk ~ 400 kbar, the time scale for the α−ω phase 

transition is prompt, δtα−ε < 1 nsec. 

We next looked at shocked polycrystalline Fe with this dynamic EXAFS 

technique. [Yaakobi, 2005a, 2005b]  We first used the FEEF8 theory to establish the 

expected EXAFS spectra for unshocked α-phase (bcc) Fe and shocked ε-phase (hcp) Fe, 

assuming a ~20% compression for the shocked state, as shown in Fig. 6c.  A 20% 

compression is predicted from radiation-hydrodynamics simulations of shocked Fe at Pshk 

~ 350 kbar, assuming the α - ε phase transition.  Figure 6c clearly shows that the small 

peak marked “w” disappears in the ε-phase.  The dynamic EXAFS results of the shocked 

Fe experiments are shown in Fig. 6d;  the “w”peak is unmistakenly absent.  Based on the 

comparison of Figs. 6d with 6c, we conclude that we have observed the α - ε phase 

transition of shocked Fe, and that the transition time scale (at Pshk ~ 350 kbar) is sub-nsec. 

[Yaakobi, 2005a, 2005b]  Dynamic diffraction experiments of shocked Fe also at the 

Omega laser, have also shown that this transition occurs on sub-ns time scales at Pshk ~ 

350 kbar. [Kalantar, 2005]  In addition, the shocked Fe diffraction experiments showed 

that the compression path was from 1D α-phase (bcc) to 3D ε-phase (hcp), with no 

observation of a 3D, plastically relaxed α-phase preceding the phase transition.  The 

earlier MD simulations had actually predicted this exact lattice response. [Kadau, 2002]   

 

VI.  Dynamic diffraction experiments 

We now discuss time-resolved dynamic diffraction experiments. This technique 

offers the potential to probe fundamental quantities such as phase, Peierls barrier, and 

dislocation mobility, at high pressures and strain rates, and is particularly well suited to 
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studies of shocked, single crystals.  If a shock or compression wave traverses a single 

crystal, the lattice planes compress, and potentially relax through plastic flow towards a 

more 3D symmetric (hydrostatic) configuration.  This can be observed by recording 

Bragg diffraction signals off multiple lattice planes, as illustrated in sketch in Fig. 7a.  

The shock compressed lattice can be measured by recording the diffraction signal from a 

short (~1 ns) synchronized point source burst of x-rays, onto x-ray film.  An example of 

an unshocked diffraction experiment in single crystal Cu, done at the Vulcan laser at 

RAL, England, is shown in Fig. 7b. [Hawreliak, 2005]  The (laser driven) x-ray source 

was Cu Heα at 8.3-8.4 keV.  Also shown are the fits, with lattice planes identified.  Even 

though this is unshocked, the image in Fig. 7b shows the power of dynamic diffraction 

for determining the phase of the sample, with sub-nsec time resolution.  We have also 

done dynamic diffraction experiments with shocked Cu, at Pshk ~ 180 kbar [46] The 

conclusion from the dynamic experiments was that the shocked Cu sampled relaxed to a 

3D-symmetric (hydrostatic) state promptly, ie, over sub-nsec time scales.  We show an 

example from a dynamic (driven) experiment in Fig. 7c for single crystal Ti shocked 

along the [0001] direction at Pshk ~ 70 kbar, done on the Janus laser at LLNL.  [Swift, 

2005]  Initially there is diffraction only from the unshocked region (lower arc, labeled 

“ambient”).  Later in time, there are regions of the Ti that have been shocked, and regions 

that remain unshocked.  With a laser driven, doubled pulsed “backlighter” (ie, timed burst 

of x-rays), both shocked and unshocked regions can be superposed on the same film 

pack, as shown in the image in Fig. 7c.  Ongoing dynamic diffraction experiments over a 

range of shock strengths are attempting to confirm the α−ω phase transition inferred from 

the dynamic EXAFS results.  The diffraction experiments are also examining whether the 
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compression is in a plastically relaxed 3D symmetric (~hydrostatic) state prior to the 

phase transition. [Lorenzana, 2005] 

 Molecular dynamics (MD) simulations offer a very powerful tool for predicting 

the microscopic lattice response to compression at high pressures and strain rates.  We 

show two examples in Fig. 8, corresponding to shocked Cu (Figs. 8a, 8b) and shocked Ti 

(Figs. 8c, 8d).  The shocked Cu simulation corresponds to a 350-milliion atom simulation 

of single crystal Cu ~1 µm thick, shocked at Pshk ~ 35 GPa along the [001] direction. 

[Bringa, 2005b]  The Cu sample included pre-existing dislocation sources in the form of 

prismatic loops, and the shock front had a ~50 psec linear ramp.  A snapshot from this 

simulation at 100 ps, showing the centro-symmetry parameter (CSP), is given in Fig. 8a.  

The color scale has been adjusted to show both dislocations and stacking faults.  The 

shock leading edge is just approaching the pre-existing prismatic loop source at the upper 

right of the figure.  Once the pressure ramp wave exceeds the threshold for either 

activating the source (σzz ~ 10 GPa) or homogeneous nucleation of dislocations, σzz~30 

GPa, a high density of dislocations and stacking faults is created, and the evolution 

towards 3D plastic relaxation behind the shock front commences.  One conclusion from 

these simulations is that to reproduce the experimentally observed prompt 3D plastic 

relaxation of shocked, single crystal Cu, [46] requires very large scale simulations, 

covering ~1 µm sample thickness and ~0.2 ns shock transit time.  Shorter simulations 

show large dislocation densities being created, but do not allow sufficient time for 

dislocation transport to relax the initially 1D lattice compression to the plastic, 3D 

relaxed state. [Rosolankova, 2004]  The dislocation density versus position, for a full set 

of time steps, from the simulation illustrated in Fig. 8a is shown in Fig. 8b.  Prior to the 



 21 

shock wave encountering the pre-existing source, the dislocation density and relaxation 

corresponds to homogenous nucleation, and the dislocation density from the MD 

simulation is ~1014 cm-2.  Once the pre-existing source has been activated by the ramp 

wave, the dislocation density drops by a factor of ~3, due to plastic relaxation 

commencing at a much lower stress threshold of ~10 GPa.  This allows greater time for 

plastic relaxation to occur during the ramp, and hence, the lower peak value of 

dislocation density. [Bringa, 2005b] 

 In Fig. 8c, we show an MD simulation of shocked single crstal Ti, at a shock 

strength of Pshk = 22 GPa = 220 kbar, which is well above the experimentally inferred 12 

GPa shock threshold for observing the α−ω phase transition. [Yaakobi, 2004a; 2004b]  

The Ti was shocked along the [0001] direction.  The MD shows a very prompt transition 

from the α-phase to the ω-phase.  Figure 8d shows axial profiles of the pressure wave, 

showing a dramatic 3-wave structure.  The leading elastic (1D compression) wave is 

observed in this plot at a position of ~300 Angstroms, followed by a plastic relaxation 

wave at ~290 Angstroms.  The α−ω phase transition wave trails these two leading waves, 

commencing at a position of ~200 Angstroms.  This situation, which is consistent with 

the experimental diffraction results shown in Fig. 7d, is different from the shocked Fe 

case, which evolved directly from 1D compression of the initial phase directly into the 

phase transition.  With the shocked Ti, it appears that the lattice first enters the plastic 

relaxation regime, then undergoes the structural phase transition.  It will be interesting in 

subsequent work, to understand the precise differences between these two cases. 
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VII.  Recovery of Driven Samples 

In this section the use of sample recovery to infer deformation mechanisms and 

integral quantities about the drive and sample are discussed.  The experimental 

configuration for one class of recovery experiments is shown in Fig. 9a.  In the ramped 

drive case illustrated, the laser drives a shock through a reservoir, which expands across a 

gap, and stagnates on the sample being studied, similar to the drives illustrated in Fig. 2.  

The main differences are that the sample is typically much thicker so that it survives the 

loading process, and it is recovered in a foam filled recovery tube.  A substantial number 

of recovery experiments have also been done with a simpler, shock drive that results from 

direct laser illumination of the sample. [Schneider, 2004; Meyers, 2003; McNaney, 2004]  

In the ramped wave case, as the compression wave runs into the sample, it eventually 

steepens into a shock, as shown in Fig. 2c.  So for recovery experiments involving thick 

samples and a ramped drive, the portion of the sample nearest the driven surface feel the 

ramped (shockless) loading, whereas regions deeper into the sample see a shocked drive.  

The lattice response can vary, depending on whether the load is a ramp or a shock. 

[McNaney, 2005]    

In either loading case, the macroscopic end result is the formation of a crater at 

the driven surface.  An example for single crystal Cu ramp loaded to Pmax ~ 250 kbar, is 

shown in Fig. 9b. [McNaney, 2005] The crater dimensions are ~120 µm deep by ~1 mm 

diameter, and depend on the strength and duration of the loading, and the strength of the 

material.  The dynamics of crater formation are illustrated in Fig. 9c, based on the results 

from 2D simulations.  Note in particular that the crater formation process is very slow, 

compared to the loading.  The duration of the high pressure (250 kbar) loading is a few 
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tens of nanoseconds.  Behind the loading wave, a slow plastic flow is induced.  This 

plastic flow continues until its energy is dissipated by the strength of the material.  The 

result is that the crater formation is not complete until a microsecond or longer, as shown 

in Fig. 9c.  The temperatures felt, as a function of depth from the loaded surface, are 

shown in Fig. 9d, from the same simulations that reproduced the observed crater depth.  

In the shockless region, at depths < ~100 µm, the peak temperature remains below ~400 

K.  Deeper in,  > 100 µm, the ramped wave has steepened into a shock, and the peak 

temperature is slightly above 400 K.  The high temperature conditions decay away over 

time intervals of ~100 nsec.  The short duration of the high pressure and high temperature 

conditions is thought to allow the dynamically created microstructure (dislocations, 

stacking faults, twins, etc) to be more effectively “frozen in”, such that the residual 

microstructure is more closely correlated to the microstructure created dynamically. In 

comparison, HE loaded samples typically have high pressure conditions lasting a 

microsecond or longer, and the high temperature conditions last longer yet.  Under the 

HE loaded conditions, considerable annealing, thermal recovery, and recrystallization is 

thought to occur, making the interpretation of the residual microstructure more 

problematic, especially for very high pressure loading conditions. [Cao, 2005] 

Examples of our results are shown in Fig. 10 for single crystal, thick Cu shocked 

along the [001] direction. [35, 36, 42, 43]  Samples of ~1 mm thick single crystal Cu 

were shock compressed along the [001] direction by laser illumination with 40 - 320 J of 

laser energy in a 3.5 ns pulse in a 2.5 mm diameter spot on the Omega laser. The samples 

were recovered from a foam-filled recovery tube, sectioned, and analyzed by TEM.  The 

image shown in Fig. 9a shows the residual microstructure resulting from a ~12 GPa 
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shock, and the image in Fig.9b corresponds to a ~40 GPa shock, along the [100] crystal 

orientation.  The dislocation cell structure shown in Fig. 9a corresponds to the residual 

tangled dislocations that result from shock deformation due to slip along the 12 dominant 

slip systems: four {111} planes and three <110> slip directions within each of these 

planes.  The residual microstructure shown in Fig. 9b is considerably different from that 

shown in Fig. 9a.  This image is the result of a TEM analysis with an electron beam 

direction of B = <001>, and the (electron) diffraction plane corresponds to (200).  The 

distinct cross-hatch pattern represents traces of {111} planes on (001), that is, the edge-

on view of the four {111} planes cutting the (001) plane. The different hues in the criss-

cross pattern represents stacking fault bundles or regions of micro-twins.  All four 

stacking fault  variants, (111) 1
6 [1 1 2], (111 ) 1

6 [112],(1 11) 1
6 [11 2],(11 1) 1

6 [11 2], are observed 

(that is, a displacement of 1
6 [1 1 2] due to a residual partial dislocation, along the (111) 

slip plane, and so on).  Given that the laser-induced shock direction was <001>, all four 

{111} primary slip planes should be activated with equal probability, having the same 

Schmid factor of 0.4082. [35]  The comparison between the residual dislocation cells 

shown in Fig. 9a and the micro-twins shown in Fig. 9b suggests a twinning shock 

threshold between 12 GPa and 40 GPa.  This threshold can be estimated analytically, as 

described in [36], giving Ptwinning ≈ 17 GPa. 

This slip-twinning threshold in Cu is sensitive to other factors as well.  When the 

orientation along which the single crystal Cu is shocked is changed from [001] to [134], 

the slip-twinning threshold increases considerably, as shown in Fig. 9c.  When shocked at 

40 GPa along [134], the dominant deformation mechanism is still apparently slip.  [35; 

Schneider, 2005a]  The suggestion is that there are fewer slip systems activated when Cu 



 25 

is shocked along [134].  This results in a lower probability of dislocation tangles and 

pinning sites, lowering the density of forest dislocations, and allowing slip (by dislocation 

transport along glide planes) to occur to higher shock pressures and strain rates.  The 

deformation mechanism can also be modified by lowering the stacking fault energy, thus 

making twinning energetically more competitive with slip.  Figure 9d shows the residual 

stacking faults and microtwins in Cu(6 wt.% Al), shocked along the [001] direction at Pshk 

~ 12 GPa.  When alloyed with 6 wt.% Al, the stacking fault energy has been lowered 

sufficiently that stacking fault bundles and twinning are the preferred deformation 

mechanism at Pshk ~ 12 GPa, (Fig. 9d) whereas for pure Cu shocked in the same manner 

(Fig. 9a), slip was the dominant deformation mechanism. [Schneider, 2005b]   

In Fig. 10e, the results of an analytic model, which has been “calibrated” against 

experiment, is shown, for predicting the slip-twinning threshold shock pressure for single 

crystal Cu shocked along the [001] or [134] directions, as a function of temperature. 

[Schneider, 2004] As already discussed, this threshold is expected to be higher for the 

[134] direction, which is reflected in the analytic prediction in Fig. 10e.  At high 

temperature, however, slip becomes a more favorable deformation mechanism, which is 

why the curves have a positive slope.   

We conclude with a figure showing the residual dislocation density for Cu(2 wt. 

% Al) and Cu(6 wt. % Al), as a function of shock pressure.  Since the Cu(2 wt% Al) has 

a higher slip-twinning threshold, dislocation transport will be the dominant mechanism to 

higher shock pressures, which is why this system has the higher residual dislocation 

density.  Nonetheless, the peak observed residual densities, ~1014 m-2, is several orders of 

magnitude lower than what is thought required immediately behind the shock front to 
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releave the shear stress, as predicted by the MD simulations shown in Fig. 8b.  It is 

thought that during decompression, and due to thermal healing, that the residual 

dislocation density is much lower, at least 100x (maybe more) than the dynamic 

dislocation density required to relax the shear stress directly behind the shock front. 

[Bringa, 2005c] 

 

VIII.   Experiments Planned for the NIF Laser 

Up until now, we have described experiments that have been done on existing 

laser facilities.  Pressures and strain rates achieved correspond to 10-200 GPa and 106-108 

s-1.  With the commissioning of the new National Ignition Facility laser at LLNL, 

[Paisner, 1994; Hogan, 2001] an opportunity presents itself to increase the pressures of 

the samples in the solid state to much higher values, P > 103 GPa. [Remington, 2005b] It 

will be particularly interesting to see, for example, how Peierls barrier, shear modulus, 

and material strength scale as pressure and strain rate are increased 100-fold above 10 

GPa and 105 s-1.  At the other extreme for laser experiments, sample sizes approaching ~1 

cm in transverse dimension and ~1 mm in thickness at pressures of a few x 100 GPa may 

be possible, using much larger laser spots and much longer (~100 ns) pulse lengths. 

 In summary, the field of extreme materials science is gaining considerable 

interest, and new results are emerging at a fast pace.  In this article, we have review the 

progress of our working group in this area.  All of the experiments discusses in this paper 

were done on various high energy lasers, such as the Janus, Trident, Vulcan, and Omega 

lasers.  High strain rate constitutive (strength) models were presented, showing that a key 

observable will be the transition from the thermal activation to phonon drag regime.  A 
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ramped, shockless drive was developed, to allow high pressure regimes in the solid state 

to be accessed.  Rayleigh-Taylor hydrodynamics experiments were demonstrated to be 

sensitive to high (pressure, strain rate) strength models.  The EXAFS diagnostic 

technique allows a volumetrically averaged temperature, compression, and phase to be 

experimentally determined.  Dynamic diffraction experiments allow phase and 

compression to be measured, and also allow the rate of the 1D-to-3D transition to be 

followed, which is sensitive to the dislocation density and mobility.  MD simulations 

were shown that were in very good agreement with EXAFS and diffraction experiments 

of shocked samples.  Recovery and analysis of the residual microstructure was shown to 

allow the dominant deformation mechanism to be inferred, and in same cases 

“controlled”.  Dislocation densities predicted from the MD simulations are significantly 

higher than those observed in the residual microstructure.  A very important diagnostic 

need for future experiments will be a dynamic, time-resolved, dislocation density 

diagnostic. 
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FIGURE CAPTIONS 
 

Figure 1:  Constitutive models.  (a) Sketch showing schematically the mechanisms of 

stress assisted thermal activation and phonon drag deformation. (b)  Flow stress (kbar) 

versus log strain rate for a variety of models (see text for details) for Ta at 0.5 Mbar, 500 

K temperature, and plastic strain of 0.1: (1a) Hoge-Mukherjee, (1b) Steinberg-Lund, (2a) 

“hybrid” Steinberg-Lund, (2b) modified Steinberg-Lund, turning off phonon drag, and 

scaling the Peierls barrier with the pressure dependent shear modulus, and (3) the PTW 

model. (c) Flow stress vs. log strain rate for the PTW model for Ta at nominal 0.5 Mbar 

conditions, varying the temperature by 20% and 40%.  (d) Same as (c) except the density 

was varied by 20% and 40%. [Remington, 2004] 

Figure 2: Ramped drive.  (a) Sketch of how the laser driven ramped drive works. (b) 

VISAR trace of a Pmax = 1.2 Mbar ramped drive laser shot on the Omega laser.  (c) 

Analysis of a series of 1.2 Mbar ramped drive experiments at Omega, varying the 

thickness of the Al sample.  (d) Pressure vs. time for five different experiments at Omega, 

showing the ramped drive for maximum pressures spanning 0.15 kbar to 2 Mbar. 

[Edwards, 2004;  Lorenz, 2005b] 

Figure 3: RT as a strength diagnostic.  (a) Experimental configuration for using the 

ramped drive at the Omega laser to do a Rayeligh-Taylor (RT) instability experiment at 

high pressure, solid state conditions.  The unloading reservoir pushes on a rippled thin 

metal payload.  (b) Examples of a series of RT experiments in Al6061-T6 to infer 

strength at Pmax = 200 kbar.  The 2D simulations used the Steinberg-Guinan strength 

model, and varied the pressure hardening term multiplier, A, until the results reproduced 

the experimental observations. [Lorenz, 2005a] 
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Figure 4:  Parameters from the 2D RT simulations, volume averaged over the foil 

dimensions, assuming e-kz weighting, where k = 2π/λ is the perturbation wave vector (see 

text).  Strength increased 4x due to pressure hardening. [Pollaine, 2005] 

Figure 5:  Extended x-ray absorption fine structure (EXAFS) measurement technique. (a) 

Physics basis for the EXAFS process.  [Yaakobi, 2003]  (b) Experimental configuration 

for the dynamic EXAFS technique, developed at the Omega laser.  (c) X-ray spectrum 

emerging from the capsule implosion, used for the EXAFS transmission measurements.  

(d) Modulations above the K-edge of cold-Ti in an EXAFS demonstration experiment. 

[Yaakobi, 2003] 

Figure 6:  EXAFS results for (a) shocked V, and (b) shocked Ti, at Pshk ~ 400 kbar.  (c) 

FEFF8 simulations of EXAFS from unshocked and shocked Fe, and (d) dynamic EXAFS 

measurements of unshocked and shocked Fe at Pshk = 350 kbar.  [Yaakobi, 2004a, 2004b, 

2005a, 2005b] 

Figure 7:  Dynamic diffraction technique. (a) Experimental configuration for laser based 

dynamic diffraction. (b) Example of dynamic diffraction on unshocked, single crystal Cu.  

(c) Example of dynamic diffraction from shocked (Pshk ~ 70 kbar) single crystal Ti. 

[Loveridge-Smith, 2001; Hawreliak, 2005; Swift, 2005; Lorenzana, 2005] 

Figure 8:  Molecular dynamics (MD) simulations.  (a) A very large scale MD result of 

shocked single crystal Cu. [Bringa, 2005] (b) Analysis of the MD result shown in (a) to 

extract dislocation densitiy versus position at a variety of time steps (62, 72, 82, 10, and 

143 psec). (c) The result of an MD simulations of shocked single crystal Ti.  The colors 

represent coordination number. [Sadigh, 2005] (d) The pressure versus position for the 



 35 

shocked Ti MD simulation shown in (c).  Note the 3-wave structure: elastic, plastic, and 

phase transition waves. 

Figure 9:  Recovery and crater formation.  (a) Experimental configuration for the laser 

based, ramped loading recovery experiments.  (b) Typical crater result in ramp loaded 

single crystal Cu.  (c) Results from 2D simulations showing pressure versus time and 

crater depth vs. time, for the experiment shown in (b).  (d) Temperature vs. depth into the 

Cu sample, for the loading profile shown in (c). [McNaney, 2004; 2005] 

Figure 10:  (a)-(d) Recovery and TEM analysis.  (a) Single crystal Cu, shocked along 

[100] at Pshk ~ 120 kbar = 12 GPa. (b) Similar to (a) expect that Pshk ~ 400 kbar = 40 GPa. 

(c) Similar to (b) expect that the 40 GPa shock was in the crystal [134] direction, instead 

of [100].  (d) Similar to (a) expect that the sample was single crystal Cu-6wt % Al, to 

lower the stacking fault energy.  [Meyers, 2003; Schneider, 2004, 2005a, 2005b].  (e) 

Analytic model of the slip twinning threshold; and (f) residual dislocation density as a 

function of shock strength, and stacking fault energy. [Schneider, 2005b] 
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