17 research outputs found

    Differentiation of pork from beef, chicken, mutton and chevon according to their primary amino acids content for halal authentication

    Get PDF
    The detection of pork in various food products has been an important subject of study in many countries. The current study was aimed to differentiate pork from selected meats of beef, mutton, chevon and chicken based on their primary amino acid contents using reverse phase-high performance liquid chromatography (RP-HPLC) with derivatization by o-phthalaldehyde (OPA) and ultraviolet (UV) detection. The results show that the most discriminative amino acids between pork and others werevaline, histidine, serine, alanine and arginine. The findings here lay the ground work for the future research to develop a marker for halal meat authentication based on the amino acids content.Keywords: RP-HPLC, OPA, Amino acids, halal meat, por

    Analysis of cod-liver oil adulteration using Fourier Transform Infrared (FTIR) spectroscopy.

    Get PDF
    Analysis of the adulteration of cod-liver oil with much cheaper oil-like animal fats has become attractive in recent years. This study highlights an application of Fourier transform infrared (FTIR) spectroscopy as a nondestructive and fast technique for the determination of adulterants in cod-liver oil. Attenuated total reflectance measurements were made on pure cod-liver oil and cod-liver oil adulterated with different concentrations of lard (0.5–50% v/v in cod-liver oil). A chemometrics partial least squares (PLS) calibration model was developed for quantitative measurement of the adulterant. Discriminant analysis method was used to classify cod-liver oil samples from common animal fats (beef, chicken, mutton, and lard) based on their infrared spectra. Discriminant analysis carried out using seven principal components was able to classify the samples as pure or adulterated cod-liver oil based on their FTIR spectra at the selected fingerprint regions (1,500–1,030 cm−1)

    Enzyme‐assisted aqueous extraction of Kalahari melon seed oil: optimization using response surface methodology

    Get PDF
    Enzymatic extraction of oil from Kalahari melon seeds was investigated and evaluated by response surface methodology (RSM). Two commercial protease enzyme products were used separately: Neutrase® 0.8 L and Flavourzyme® 1000 L from Novozymes (Bagsvaerd, Denmark). RSM was applied to model and optimize the reaction conditions namely concentration of enzyme (20–50 g kg−1 of seed mass), initial pH of mixture (pH 5–9), incubation temperature (40–60 °C), and incubation time (12–36 h). Well fitting models were successfully established for both enzymes: Neutrase 0.8 L (R 2 = 0.9410) and Flavourzyme 1000 L (R 2 = 0.9574) through multiple linear regressions with backward elimination. Incubation time was the most significant reaction factor on oil yield for both enzymes. The optimal conditions for Neutrase 0.8 L were: an enzyme concentration of 25 g kg−1, an initial pH of 7, a temperature at 58 °C and an incubation time of 31 h with constant shaking at 100 rpm. Centrifuging the mixture at 8,000g for 20 min separated the oil with a recovery of 68.58 ± 3.39%. The optimal conditions for Flavourzyme 1000 L were enzyme concentration of 21 g kg−1, initial pH of 6, temperature at 50 °C and incubation time of 36 h. These optimum conditions yielded a 71.55 ± 1.28% oil recovery

    Use optimization of natural antioxidants in refined, bleached, and deodorized palm olein during repeated deep-fat frying using response surface methodology

    Get PDF
    An optimization study on the use of oleoresin rosemary extract, sage extract, and citric acid added into refined, bleached, and deodorized (RBD) palm olein in deep-fat frying of potato chips was carried out using response surface methodology (RSM). Results showed that oleoresin rosemary extract was the most important factor affecting the sensory acceptability of potato chips. For taste and odor, its effects were highly significant (P<0.01), while for crispiness and overall acceptability, the effects were significant (P<0.05). As for sage extract, the level of this antioxidant had a highly significant (P<0.01) effect on appearance and taste and a significant effect (P<0.05) on odor and overall acceptability, but had no effect on crispiness. Although there was no significant synergistic correlation between citric acid and oleoresin rosemary extract or sage extract at the first order, its second order was significantly (P<0.05) related to taste, crispiness, and overall acceptability. An interaction between oleoresin rosemary and sage extracts also significantly (P<0.05) improved the score of overall acceptability of the potato chips. Contour maps of the sensory scores of potato chips indicated that the optimal points for appearance were achieved using 0.062% oleoresin rosemary extract, 0.066% sage extract, and 0.023% citric acid, while optimal task was achieved with 0.063% oleoresin rosemary extract, 0.075% sage extract, and 0.025% citric acid. With the same sequence of ingredients added into oil, the combinations required to achieve the optimal odor, crispiness, and overall acceptability scores were 0.058-0.046-0.026, 0.060-0.071-0.022, and 0.060-0.064-0.026%, respectively

    Regiospecific analysis of Mono and Diglycerides in Glycerolysis products by GC x GC TOF-MS.

    Get PDF
    Comprehensive bidimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOF-MS) was used for the characterization of regiospecific mono- and diglycerides (MG-DG) content in the glycerolysis products derived from five different lipids included lard (LA), sun flower seed oil (SF), corn oil (CO), butter (BU), and palm oil (PA). The combination of fast and high temperature non-orthogonal column set namely DB17ht (6 m × 0.10 mm × 0.10 μm) as the primary column and SLB-5 ms (60 cm × 0.10 mm × 0.10 μm) as the secondary column was applied in this work. System configuration involved high oven ramp temperature to obtain precise mass spectral identification and highest effluent’s resolution. 3-Monopalmitoyl-sn-glycerol (MG 3-C16) was the highest concentration in LA, BU and PA while monostearoyl-sn-glycerol (MG C18) in CO and 1,3-dilinoleol-rac-glycerol (DG C18:2c) in SF. Principal component analysis accounted 82% of variance using combination of PC1 and PC2. The presence of monostearoyl-sn-glycerol (MG C18), 3-Monopalmitoyl-sn-glycerol (MG 3-C16), 1,3-dilinoleol-rac-glycerol (DG C18:2c), 1,3-dipalmitoyl-glycerol (DG 1,3-C16), and 1,3-dielaidin (DG C18:1t) caused differentiation of the samples tested

    Application of FTIR spectroscopy for the determination of virgin coconut oil in binary mixtures with olive oil and palm oil.

    Get PDF
    Rapid Fourier transform infrared (FTIR) spectroscopy combined with attenuated total reflectance (ATR) was applied for quantitative analysis of virgin coconut oil (VCO) in binary mixtures with olive oil (OO) and palm oil (PO). The spectral bands correlated with VCO, OO, PO; blends of VCO and OO; VCO and PO were scanned, interpreted, and identified. Two multivariate calibration methods, partial least square (PLS) and principal component regression (PCR), were used to construct the calibration models that correlate between actual and FTIR-predicted values of VCO contents in the mixtures at the FTIR spectral frequencies of 1,120–1,105 and 965–960 cm−1. The calibration models obtained were cross validated using the “leave one out” method. PLS at these frequencies showed the best calibration model, in terms of the highest coefficient of determination (R 2) and the lowest of root mean standard error of calibration (RMSEC) with R 2 = 0.9992 and RMSEC = 0.756, respectively, for VCO in mixture with OO. Meanwhile, the R 2 and RMSEC values obtained for VCO in mixture with PO were 0.9996 and 0.494, respectively. In general, FTIR spectroscopy serves as a suitable technique for determination of VCO in mixture with the other oils
    corecore