5 research outputs found

    Bee Venom and Its Two Main Components—Melittin and Phospholipase A2—As Promising Antiviral Drug Candidates

    No full text
    International audienceViruses are known to infect most types of organisms. In humans, they can cause several diseases that range from mild to severe. Although many antiviral therapies have been developed, viral infections continue to be a leading cause of morbidity and mortality worldwide. Therefore, the discovery of new and effective antiviral agents is desperately needed. Animal venoms are a rich source of bioactive molecules found in natural goods that have been used since ancient times in alternative medicine to treat a variety of human diseases. Recently, and with the onset of the COVID-19 pandemic, scientists have regained their interest in the possible use of natural products, such as bee venom (BV), as a potential antiviral agent to treat viral infections. BV is known to exert many therapeutic activities such as anti-proliferative, anti-bacterial, and anti-inflammatory effects. However, there is limited discussion of the antiviral activity of BV in the literature. Therefore, this review aims to highlight the antiviral properties of BV and its two primary constituents, melittin (MEL) and phospholipase A2 (PLA2), against a variety of enveloped and non-enveloped viruses. Finally, the innovative strategies used to reduce the toxicity of BV and its two compounds for the development of new antiviral treatments are also considered

    Protéine 2C d’Entérovirus : protéine clé de la réplication virale et cible antivirale

    No full text
    Enteroviruses (EVs) include many human pathogens of increasing public health concern. These EVs are often associated with mild clinical manifestations, but they can lead to serious complications such as encephalitis, meningitis, pneumonia, myocarditis or poliomyelitis. Despite significant advances, there is no approved antiviral therapy for the treatment of enterovirus infections. Due to the high genotypic diversity of EVs, molecules targeting highly conserved viral proteins may be considered for developing a pan-EV treatment. In this regard,the ATPase/Helicase 2C, which is a highly conserved non-structural protein among EVs, has essential functions for viral replication and is therefore an attractive antiviral target. Recent functional and structural studies on the 2C protein led to the identification of molecules showing ex vivo anti-EV activity and associated with resistance mutations on the coding sequence of the 2C protein. This review presents the current state of knowledge about the 2C protein from an antiviral target perspective and the mode of action of specific inhibitors for this therapeutic target.Les entérovirus (EV) comprennent de nombreux agents pathogènes humains de plus en plus préoccupants en matière de santé publique. Ces EV sont souvent associés à des manifestations cliniques bénignes, mais peuvent entraîner des complications graves telles que des encéphalites, des méningites, des pneumonies, des myocardites et des poliomyélites. Malgré d’importantes avancées, il n’existe pas de thérapie antivirale approuvée pour le traitement des infections à entérovirus. De par la grande diversité génotypique des EV, des molécules ciblant des protéines virales fortement conservées peuvent être envisagées pour le développement d’antiviraux pan-EV. À cet égard, l’ATPase/hélicase 2C, qui est une protéine non structurale hautement conservée chez les EVs, possède des fonctions essentielles à la réplication virale, et s’avère donc une cible antivirale attractive. De récentes études fonctionnelles et structurales sur la protéine 2C ont permis l’identification de molécules démontrant une activité anti-EV ex vivo et associées à des mutations de résistance sur la séquence codante de la protéine 2C. Cette revue présente un état des lieux des connaissances actuelles sur la protéine 2C dans une perspective de cible antivirale et sur le mode d’action d’inhibiteurs spécifiques de cette cible thérapeutique

    Protéine 2C d’Entérovirus : protéine clé de la réplication virale et cible antivirale

    No full text
    International audienceEnteroviruses (EVs) include many human pathogens of increasing public health concern. These EVs are often associated with mild clinical manifestations, but they can lead to serious complications such as encephalitis, meningitis, pneumonia, myocarditis or poliomyelitis. Despite significant advances, there is no approved antiviral therapy for the treatment of enterovirus infections. Due to the high genotypic diversity of EVs, molecules targeting highly conserved viral proteins may be considered for developing a pan-EV treatment. In this regard, the ATPase/Helicase 2C, which is a highly conserved non-structural protein among EVs, has essential functions for viral replication and is therefore an attractive antiviral target. Recent functional and structural studies on the 2C protein led to the identification of molecules showing ex vivo anti-EV activity and associated with resistance mutations on the coding sequence of the 2C protein. This review presents the current state of knowledge about the 2C protein from an antiviral target perspective and the mode of action of specific inhibitors for this therapeutic target.Les entérovirus (EV) comprennent de nombreux agents pathogènes humains de plus en plus préoccupants en matière de santé publique. Ces EV sont souvent associés à des manifestations cliniques bénignes, mais peuvent entraîner des complications graves telles que des encéphalites, des méningites, des pneumonies, des myocardites et des poliomyélites. Malgré d’importantes avancées, il n'existe pas de thérapie antivirale approuvée pour le traitement des infections à entérovirus. De par la grande diversité génotypique des EV, des molécules ciblant des protéines virales fortement conservées peuvent être envisagées pour le développement d’antiviraux pan-EV. À cet égard, l’ATPase/Hélicase 2C, qui est une protéine non structurale hautement conservée chez les EVs, possède des fonctions essentielles à la réplication virale, et s’avère donc une cible antivirale attractive. De récentes études fonctionnelles et structurales sur la protéine 2C ont permis l’identification de molécules démontrant une activité anti-EV ex vivo et associées à des mutations de résistance sur la séquence codante de la protéine 2C. Cette revue présente un état des lieux des connaissances actuelles sur la protéine 2C dans une perspective de cible antivirale et sur le mode d'action d'inhibiteurs spécifiques de cette cible thérapeutique

    Apis mellifera syriaca Venom: Evaluation of Its Anticoagulant Effect, Proteolytic Activity, and Cytotoxicity along with Its Two Main Compounds—MEL and PLA2—On HeLa Cancer Cells

    No full text
    Bee venom (BV) is one of the most remarkable natural products that has been a subject of studies since ancient times. Recent studies have shown that Apis mellifera syriaca venom possesses antibacterial as well as cytotoxic effects on cancer cell lines. The venom contains a variety of bioactive molecules—mainly melittin (MEL) and phospholipase A2 (PLA2), as well as other compounds that are not well characterized. In this work, we continue the biological characterization of A. mellifera syriaca venom by testing its anticoagulant effect on human plasma using the prothrombin time (PT) test, as well as assessing its proteolytic activity. In addition, the cytotoxicity of the crude venom—and of its two main components, MEL and PLA2—was tested on HeLa cancer cell lines for the first time. The results obtained showed the capacity of A. mellifera syriaca venom to increase clotting time, thereby proving its anticoagulant effect. Moreover, the venom did not demonstrate a significant proteolytic activity unless administrated at concentrations ≥ 5 mg/mL. Finally, we showed that crude A. mellifera syriaca venom, along with MEL, exhibit a strong in vitro cytotoxic effect on HeLa cancer cell lines, even at low concentrations. In summary, our findings could serve as a basis for the development of new natural-based drug candidates in the therapeutic field

    The Cytotoxic Effect of Apis mellifera Venom with a Synergistic Potential of Its Two Main Components—Melittin and PLA2—On Colon Cancer HCT116 Cell Lines

    No full text
    International audienceColon carcinogenesis is ranked second globally among human diseases after cardiovascular failures. Bee venom (BV) has been shown to possess in vitro anticancer effects against several types of cancer cells. The two main biopeptides of Apis mellifera BV, namely, melittin (MEL) and phospholipase A2 (PLA2), are suspected to be the biomolecules responsible for the anticancer activity. The present work aims to evaluate the cytotoxic effect of the A. mellifera venom on human colon carcinoma cells (HCT116), and to assess the synergistic effect of MEL and PLA2 on these cells. After analyzing, through high-pressure liquid chromatography, the proportions of MEL and PLA2 on BV, we have established a cell viability assay to evaluate the effect of BV, MEL, PLA2, and a mixture of MEL and PLA2 on the HCT116 cells. Results obtained showed a strong cytotoxicity effect induced by the A. mellifera venom and to a lower extent MEL or PLA2 alone. Remarkably, when MEL and PLA2 were added together, their cytotoxic effect was greatly improved, suggesting a synergistic activity on HCT116 cells. These findings confirm the cytotoxic effect of the A. mellifera venom and highlight the presence of synergistic potential activities between MEL and PLA2, possibly inducing membrane disruption of HCT116 cancer cells. Altogether, these results could serve as a basis for the development of new anticancer treatments
    corecore