6 research outputs found

    KILchip v1.0: A Novel Plasmodium falciparum Merozoite Protein Microarray to Facilitate Malaria Vaccine Candidate Prioritization.

    Get PDF
    Passive transfer studies in humans clearly demonstrated the protective role of IgG antibodies against malaria. Identifying the precise parasite antigens that mediate immunity is essential for vaccine design, but has proved difficult. Completion of the Plasmodium falciparum genome revealed thousands of potential vaccine candidates, but a significant bottleneck remains in their validation and prioritization for further evaluation in clinical trials. Focusing initially on the Plasmodium falciparum merozoite proteome, we used peer-reviewed publications, multiple proteomic and bioinformatic approaches, to select and prioritize potential immune targets. We expressed 109 P. falciparum recombinant proteins, the majority of which were obtained using a mammalian expression system that has been shown to produce biologically functional extracellular proteins, and used them to create KILchip v1.0: a novel protein microarray to facilitate high-throughput multiplexed antibody detection from individual samples. The microarray assay was highly specific; antibodies against P. falciparum proteins were detected exclusively in sera from malaria-exposed but not malaria-naïve individuals. The intensity of antibody reactivity varied as expected from strong to weak across well-studied antigens such as AMA1 and RH5 (Kruskal-Wallis H test for trend: p < 0.0001). The inter-assay and intra-assay variability was minimal, with reproducible results obtained in re-assays using the same chip over a duration of 3 months. Antibodies quantified using the multiplexed format in KILchip v1.0 were highly correlated with those measured in the gold-standard monoplex ELISA [median (range) Spearman's R of 0.84 (0.65-0.95)]. KILchip v1.0 is a robust, scalable and adaptable protein microarray that has broad applicability to studies of naturally acquired immunity against malaria by providing a standardized tool for the detection of antibody correlates of protection. It will facilitate rapid high-throughput validation and prioritization of potential Plasmodium falciparum merozoite-stage antigens paving the way for urgently needed clinical trials for the next generation of malaria vaccines

    Regulation of <i>TBXT</i> expression in cancer

    No full text

    Adaptation of the Wound Healing Questionnaire universal-reporter outcome measure for use in global surgery trials (TALON-1 study): mixed-methods study and Rasch analysis

    No full text
    BackgroundThe Bluebelle Wound Healing Questionnaire (WHQ) is a universal-reporter outcome measure developed in the UK for remote detection of surgical-site infection after abdominal surgery. This study aimed to explore cross-cultural equivalence, acceptability, and content validity of the WHQ for use across low- and middle-income countries, and to make recommendations for its adaptation.MethodsThis was a mixed-methods study within a trial (SWAT) embedded in an international randomized trial, conducted according to best practice guidelines, and co-produced with community and patient partners (TALON-1). Structured interviews and focus groups were used to gather data regarding cross-cultural, cross-contextual equivalence of the individual items and scale, and conduct a translatability assessment. Translation was completed into five languages in accordance with Mapi recommendations. Next, data from a prospective cohort (SWAT) were interpreted using Rasch analysis to explore scaling and measurement properties of the WHQ. Finally, qualitative and quantitative data were triangulated using a modified, exploratory, instrumental design model.ResultsIn the qualitative phase, 10 structured interviews and six focus groups took place with a total of 47 investigators across six countries. Themes related to comprehension, response mapping, retrieval, and judgement were identified with rich cross-cultural insights. In the quantitative phase, an exploratory Rasch model was fitted to data from 537 patients (369 excluding extremes). Owing to the number of extreme (floor) values, the overall level of power was low. The single WHQ scale satisfied tests of unidimensionality, indicating validity of the ordinal total WHQ score. There was significant overall model misfit of five items (5, 9, 14, 15, 16) and local dependency in 11 item pairs. The person separation index was estimated as 0.48 suggesting weak discrimination between classes, whereas Cronbach's α was high at 0.86. Triangulation of qualitative data with the Rasch analysis supported recommendations for cross-cultural adaptation of the WHQ items 1 (redness), 3 (clear fluid), 7 (deep wound opening), 10 (pain), 11 (fever), 15 (antibiotics), 16 (debridement), 18 (drainage), and 19 (reoperation). Changes to three item response categories (1, not at all; 2, a little; 3, a lot) were adopted for symptom items 1 to 10, and two categories (0, no; 1, yes) for item 11 (fever).ConclusionThis study made recommendations for cross-cultural adaptation of the WHQ for use in global surgical research and practice, using co-produced mixed-methods data from three continents. Translations are now available for implementation into remote wound assessment pathways
    corecore