25 research outputs found

    Knot Theory: from Fox 3-colorings of links to Yang-Baxter homology and Khovanov homology

    Full text link
    This paper is an extended account of my "Introductory Plenary talk at Knots in Hellas 2016" conference We start from the short introduction to Knot Theory from the historical perspective, starting from Heraclas text (the first century AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram colorings (1956). In the second section we describe how Fox work was generalized to distributive colorings (racks and quandles) and eventually in the work of Jones and Turaev to link invariants via Yang-Baxter operators, here the importance of statistical mechanics to topology will be mentioned. Finally we describe recent developments which started with Mikhail Khovanov work on categorification of the Jones polynomial. By analogy to Khovanov homology we build homology of distributive structures (including homology of Fox colorings) and generalize it to homology of Yang-Baxter operators. We speculate, with supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants of links) will be discussed and expanded. Dedicated to Lou Kauffman for his 70th birthday.Comment: 35 pages, 31 figures, for Knots in Hellas II Proceedings, Springer, part of the series Proceedings in Mathematics & Statistics (PROMS

    Integration over a space of non-parametrized arcs, and motivic analogues of the monodromy zeta function

    Get PDF
    Notions of integration of motivic type over the space of arcs factorized by the natural C*-action and over the space of nonparametrized arcs (branches) are developed. As an application, two motivic versions of the zeta function of the classical monodromy transformation of a germ of an analytic function on â„‚d are given that correspond to these notions. Another key ingredient in the construction of these motivic versions of the zeta function is the use of the so-called power structure over the Grothendieck ring of varieties introduced by the authors

    Exotic knottings of surfaces in the 4-sphere

    Get PDF

    Opinion

    No full text

    Elementary Topology Problem Textbook

    No full text
    Dedicated to the memory of Vladimir Abramovich Rokhlin (1919–1984) – our teache
    corecore