36 research outputs found

    Universality of the Wigner time delay distribution for one-dimensional random potentials

    Full text link
    We show that the distribution of the time delay for one-dimensional random potentials is universal in the high energy or weak disorder limit. Our analytical results are in excellent agreement with extensive numerical simulations carried out on samples whose sizes are large compared to the localisation length (localised regime). The case of small samples is also discussed (ballistic regime). We provide a physical argument which explains in a quantitative way the origin of the exponential divergence of the moments. The occurence of a log-normal tail for finite size systems is analysed. Finally, we present exact results in the low energy limit which clearly show a departure from the universal behaviour.Comment: 4 pages, 3 PostScript figure

    Distribution of time-constants for tunneling through a 1D Disordered Chain

    Full text link
    The dynamics of electronic tunneling through a disordered 1D chain of finite length is considered. We calculate distributions of the transmission coefficient T, Wigner delay time and, τϕ\tau_\phi and the transport time, τt=Tτϕ\tau_t=T\tau_\phi. The central bodies of these distributions have a power-law form, what can be understood in terms of the resonant tunneling through localised states.Comment: 5 pages, 3 figures, submitted to PR

    Hidden Breit-Wigner distribution and other properties of random matrices with preferential basis

    Full text link
    We study statistical properties of a class of band random matrices which naturally appears in systems of interacting particles. The local spectral density is shown to follow the Breit-Wigner distribution in both localized and delocalized regimes with width independent on the band/system size. We analyse the implications of this distribution to the inverse participation ratio, level spacing statistics and the problem of two interacting particles in a random potential.Comment: 4 pages, 4 postscript figures appended, new version with minor change

    Topological universality of level dynamics in quasi-one-dimensional disordered conductors

    Full text link
    Nonperturbative, in inverse Thouless conductance 1/g, corrections to distributions of level velocities and level curvatures in quasi-one-dimensional disordered conductors with a topology of a ring subject to a constant vector potential are studied within the framework of the instanton approximation of nonlinear sigma-model. It is demonstrated that a global character of the perturbation reveals the universal features of the level dynamics. The universality shows up in the form of weak topological oscillations of the magnitude ~ exp(-g) covering the main bodies of the densities of level velocities and level curvatures. The period of discovered universal oscillations does not depend on microscopic parameters of conductor, and is only determined by the global symmetries of the Hamiltonian before and after the perturbation was applied. We predict the period of topological oscillations to be 4/(pi)^2 for the distribution function of level curvatures in orthogonal symmetry class, and 3^(1/2)/(pi) for the distribution of level velocities in unitary and symplectic symmetry classes.Comment: 15 pages (revtex), 3 figure

    Coherent propagation of interacting particles in a random potential: the Mechanism of enhancement

    Full text link
    Coherent propagation of two interacting particles in 1d1d weak random potential is considered. An accurate estimate of the matrix element of interaction in the basis of localized states leads to mapping onto the relevant matrix model. This mapping allows to clarify the mechanism of enhancement of the localization length which turns out to be rather different from the one considered in the literature. Although the existence of enhancement is transparent, an analytical solution of the matrix model was found only for very short samples. For a more realistic situation numerical simulations were performed. The result of these simulations is consistent with l_{2}/l_1 \sim l_1^{\gamma} , where l1l_1 and l2l_2 are the single and two particle localization lengths and the exponent γ\gamma depends on the strength of the interaction. In particular, in the limit of strong particle-particle interaction there is no enhancement of the coherent propagation at all (l2l1l_{2} \approx l_1).Comment: 23 pages, REVTEX, 3 eps figures, improved version accepted for publication in Phys. Rev.

    Electron-Electron Interaction in Disordered Mesoscopic Systems: Weak Localization and Mesoscopic Fluctuations of Polarizability and Capacitance

    Full text link
    The weak localization correction and the mesoscopic fluctuations of the polarizability and the capacitance of a small disordered sample are studied systematically in 2D and 3D geometries. While the grand canonical ensemble calculation gives the positive magnetopolarizability, in the canonical ensemble (appropriate for isolated samples) the sign of the effect is reversed. The magnitude of mesoscopic fluctuations for a single sample exceeds considerably the value of the weak localization correction.Comment: 13 pages Latex, 3 .eps figures included. To appear in Phys. Rev. B. Minor corrections, in particular in formulae; new references adde

    Statistics of S-matrix poles in Few-Channel Chaotic Scattering: Crossover from Isolated to Overlapping Resonances

    Full text link
    We derive the explicit expression for the distribution of resonance widths in a chaotic quantum system coupled to continua via M equivalent open channels. It describes a crossover from the χ2\chi^2 distribution (regime of isolated resonances) to a broad power-like distribution typical for the regime of overlapping resonances. The first moment is found to reproduce exactly the Moldauer-Simonius relation between the mean resonance width and the transmission coefficient. This fact may serve as another manifestation of equivalence between the spectral and the ensemble averaging.Comment: 4 two-column pages, RevTex. text is slightly modified; some misprints are correcte

    Extreme value statistics from the Real Space Renormalization Group: Brownian Motion, Bessel Processes and Continuous Time Random Walks

    Full text link
    We use the Real Space Renormalization Group (RSRG) method to study extreme value statistics for a variety of Brownian motions, free or constrained such as the Brownian bridge, excursion, meander and reflected bridge, recovering some standard results, and extending others. We apply the same method to compute the distribution of extrema of Bessel processes. We briefly show how the continuous time random walk (CTRW) corresponds to a non standard fixed point of the RSRG transformation.Comment: 24 pages, 5 figure

    Eigenfunctions of electrons in weakly disordered quantum dots: Crossover between orthogonal and unitary symmetries

    Full text link
    A one-parameter random matrix model is proposed for describing the statistics of the local amplitudes and phases of electron eigenfunctions in a mesoscopic quantum dot in an arbitrary magnetic field. Comparison of the statistics obtained with recent results derived from first principles within the framework of supersymmetry technique allows to identify a transition parameter with real microscopic characteristics of the problem. The random-matrix model is applied to the statistics of the height of the resonance conductance of a quantum dot in the regime of the crossover between orthogonal and unitary symmetry classes.Comment: 6 pages (latex), 3 figures available upon request, to appear in Physical Review

    Semi-classical Theory of Conductance and Noise in Open Chaotic Cavities

    Full text link
    Conductance and shot noise of an open cavity with diffusive boundary scattering are calculated within the Boltzmann-Langevin approach. In particular, conductance contains a non-universal geometric contribution, originating from the presence of open contacts. Subsequently, universal expressions for multi-terminal conductance and noise valid for all chaotic cavities are obtained classically basing on the fact that the distribution function in the cavity depends only on energy and using the principle of minimal correlations.Comment: 4 pages, 1 .eps figur
    corecore