475 research outputs found

    QTL analysis of production traits on SSC3 in a Large White×Meishan pig resource family

    Get PDF
    In order to locate the genetic regions that are responsible for economically important traits, a resource population was established by crossing Large White boars and Meishan sows. Phenotypic data of a total of 287 F2 offspring were collected from 1998 to 2000 and QTL analysis conducted using nine microsatellites on Sus scrofa chromosome 3 (SSC3). Least square regression interval mapping revealed two significant QTL effects on dressing percentage and moisture in m. longissimus dorsi, respectively. They were located at 136 cM and 22 cM in the genetic linkage map, near the marker Sw349 and Swr1637, respectively. QTL for dressing percentage had an additive effect of -1.035 ± 0.296% and a dominance effect of 1.056 ± 0.481%, and the explained phenotypic variance was 15.9%. The additive and dominance effects of QTL for moisture in m. longissimus dorsi were -0.025 ± 0.076% and 0.365 ± 0.101%, respectively, indicating that this QTL seemed to be significantly dominant in action. The present study confirms previously identified QTL and provides an important step in the search for the actual major genes involved in the traits of economic interest. South African Journal of Animal Science Vol. 36(2) 2006: 122-12

    中文词汇网络:跨语言知识处理基础架构的设计理念与实践

    Get PDF
    Title in Traditional Chinese: 中文詞彙網路 : 跨語言知識處理基礎架構的設計理念與實踐Journal title in Traditional Chinese: 中文信息學報2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Regulation of neutrophil senescence by microRNAs

    Get PDF
    Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease
    corecore