326 research outputs found

    Ionic high-pressure form of elemental boron

    Full text link
    Boron is an element of fascinating chemical complexity. Controversies have shrouded this element since its discovery was announced in 1808: the new 'element' turned out to be a compound containing less than 60-70 percent of boron, and it was not until 1909 that 99-percent pure boron was obtained. And although we now know of at least 16 polymorphs, the stable phase of boron is not yet experimentally established even at ambient conditions. Boron's complexities arise from frustration: situated between metals and insulators in the periodic table, boron has only three valence electrons, which would favour metallicity, but they are sufficiently localized that insulating states emerge. However, this subtle balance between metallic and insulating states is easily shifted by pressure, temperature and impurities. Here we report the results of high-pressure experiments and ab initio evolutionary crystal structure predictions that explore the structural stability of boron under pressure and, strikingly, reveal a partially ionic high-pressure boron phase. This new phase is stable between 19 and 89 GPa, can be quenched to ambient conditions, and has a hitherto unknown structure (space group Pnnm, 28 atoms in the unit cell) consisting of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement. We find that the ionicity of the phase affects its electronic bandgap, infrared adsorption and dielectric constants, and that it arises from the different electronic properties of the B2 pairs and B12 clusters and the resultant charge transfer between them.Comment: Published in Nature 453, 863-867 (2009

    Prevalence and risk factors of childhood allergic diseases in eight metropolitan cities in China: A multicenter study

    Get PDF
    Background Several studies conducted during the past two decades suggested increasing trend of childhood allergic diseases in China. However, few studies have provided detailed description of geographic variation and explored risk factors of these diseases. This study investigated the pattern and risk factors of asthma, allergic rhinitis and eczema in eight metropolitan cities in China. Methods We conducted a cross-sectional survey during November-December 2005 in eight metropolitan cities in China. A total of 23791 children aged 6-13 years participated in this survey. Questions from the standard questionnaire of the International Study of Asthma and Allergies in Children (ISAAC) were used to examine the pattern of current asthma, allergic rhinitis and eczema. Logistic regression analyses were performed to assess the risk factors for childhood allergies. Results The average prevalence of childhood asthma, allergic rhinitis and eczema across the eight cities was 3∙3% (95% Confidence interval (CI): 3∙1%, 3∙6%), 9∙8% (95% CI: 9∙4%, 10∙2%) and 5∙5% (95% CI: 5∙2%, 5∙8%), respectively. Factors related to lifestyle, mental health and socio-economic status were found to be associated with the prevalence of childhood allergies. These risk factors were unevenly distributed across cities and disproportionately affected the local prevalence. Conclusions There was apparent geographic variation of childhood allergies in China. Socio-environmental factors had strong impacts on the prevalence of childhood allergies; but these impacts differed across regions. Thus public health policies should specifically target at the local risk factors for each individual area

    Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival

    Get PDF
    Hypoxia inducible factors HIF1α and HIF2α are important proteins involved in the regulation of the transcription of a variety of genes related to erythropoiesis, glycolysis and angiogenesis. Hypoxic stimulation results in rapid increase of the HIF1α and 2α protein levels, as a consequence of a redox-sensitive stabilization. The HIFαs enter the nucleus, heterodimerize with the HIF1β protein, and bind to DNA at the hypoxia response elements (HREs) of target genes. In this study we evaluated the immunohistochemical expression of these proteins in 108 tissue samples from non-small-cell lung cancer (NSCLC) and in normal lung tissues. Both proteins showed a mixed cytoplasmic/nuclear pattern of expression in cancer cells, tumoural vessels and tumour-infiltrating macrophages, as well as in areas of metaplasia, while normal lung components showed negative or very weak cytoplasmic staining. Positive HIF1α and HIF2α expression was noted in 68/108 (62%) and in 54/108 (50%) of cases respectively. Correlation analysis of HIF2α expression with HIF1α expression showed a significant association (P < 0.0001, r = 0.44). A strong association of the expression of both proteins with the angiogenic factors VEGF (P < 0.004), PD-ECGF (P < 0.003) and bFGF (P < 0.04) was noted. HIF1α correlated with the expression of bek-bFGF receptor expression (P = 0.01), while HIF2α was associated with intense VEGF/KDR-activated vascularization (P = 0.002). HIF2α protein was less frequently expressed in cases with a medium microvessel density (MVD); a high rate of expression was noted in cases with both low and high MVD (P = 0.006). Analysis of overall survival showed that HIF2α expression was related to poor outcome (P = 0.008), even in the group of patients with low MVD (P = 0.009). HIF1α expression was marginally associated with poor prognosis (P = 0.08). In multivariate analysis HIF2α expression was an independent prognostic indicator (P = 0.006, t-ratio 2.7). We conclude that HIF1α and HIF2α overexpression is a common event in NSCLC, which is related to the up-regulation of various angiogenic factors and with poor prognosis. Targeting the HIF pathway may prove of importance in the treatment of NSCLC. © 2001 Cancer Research Campaignhttp://www.bjcancer.co

    The cost of community-managed viral respiratory illnesses in a cohort of healthy preschool-aged children

    Get PDF
    Background : Acute respiratory illnesses (ARIs) during childhood are often caused by respiratory viruses, result in significant morbidity, and have associated costs for families and society. Despite their ubiquity, there is a lack of interdisciplinary epidemiologic and economic research that has collected primary impact data, particularly associated with indirect costs, from families during ARIs in children.Methods : We conducted a 12-month cohort study in 234 preschool children with impact diary recording and PCR testing of nose-throat swabs for viruses during an ARI. We used applied values to estimate a virus-specific mean cost of ARIs.Results : Impact diaries were available for 72% (523/725) of community-managed illnesses between January 2003 and January 2004. The mean cost of ARIs was AU309(95309 (95% confidence interval 263 to 354).Influenzaillnesseshadameancostof354). Influenza illnesses had a mean cost of 904, compared with RSV, $304, the next most expensive single-virus illness, although confidence intervals overlapped. Mean carer time away from usual activity per day was two hours for influenza ARIs and between 30 and 45 minutes for all other ARI categories.Conclusion : From a societal perspective, community-managed ARIs are a significant cost burden on families and society. The point estimate of the mean cost of community-managed influenza illnesses in healthy preschool aged children is three times greater than those illnesses caused by RSV and other respiratory viruses. Indirect costs, particularly carer time away from usual activity, are the key cost drivers for ARIs in children. The use of parent-collected specimens may enhance ARI surveillance and reduce any potential Hawthorne effect caused by compliance with study procedures. These findings reinforce the need for further integrated epidemiologic and economic research of ARIs in children to allow for comprehensive cost-effectiveness assessments of preventive and therapeutic options.<br /

    Angular and Current-Target Correlations in Deep Inelastic Scattering at HERA

    Get PDF
    Correlations between charged particles in deep inelastic ep scattering have been studied in the Breit frame with the ZEUS detector at HERA using an integrated luminosity of 6.4 pb-1. Short-range correlations are analysed in terms of the angular separation between current-region particles within a cone centred around the virtual photon axis. Long-range correlations between the current and target regions have also been measured. The data support predictions for the scaling behaviour of the angular correlations at high Q2 and for anti-correlations between the current and target regions over a large range in Q2 and in the Bjorken scaling variable x. Analytic QCD calculations and Monte Carlo models correctly describe the trends of the data at high Q2, but show quantitative discrepancies. The data show differences between the correlations in deep inelastic scattering and e+e- annihilation.Comment: 26 pages including 10 figures (submitted to Eur. J. Phys. C

    A Two-Step Hydrothermal Synthesis Approach to Monodispersed Colloidal Carbon Spheres

    Get PDF
    This work reports a newly developed two-step hydrothermal method for the synthesis of monodispersed colloidal carbon spheres (CCS) under mild conditions. Using this approach, monodispersed CCS with diameters ranging from 160 to 400 nm were synthesized with a standard deviation around 8%. The monomer concentration ranging from 0.1 to 0.4 M is in favor of generation of narrower size distribution of CCS. The particle characteristics (e.g., shape, size, and distribution) and chemical stability were then characterized by using various techniques, including scanning electron microscopy (SEM), FT-IR spectrum analysis, and thermalgravity analysis (TGA). The possible nucleation and growth mechanism of colloidal carbon spheres were also discussed. The findings would be useful for the synthesis of more monodispersed nanoparticles and for the functional assembly

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Gains in QTL Detection Using an Ultra-High Density SNP Map Based on Population Sequencing Relative to Traditional RFLP/SSR Markers

    Get PDF
    Huge efforts have been invested in the last two decades to dissect the genetic bases of complex traits including yields of many crop plants, through quantitative trait locus (QTL) analyses. However, almost all the studies were based on linkage maps constructed using low-throughput molecular markers, e.g. restriction fragment length polymorphisms (RFLPs) and simple sequence repeats (SSRs), thus are mostly of low density and not able to provide precise and complete information about the numbers and locations of the genes or QTLs controlling the traits. In this study, we constructed an ultra-high density genetic map based on high quality single nucleotide polymorphisms (SNPs) from low-coverage sequences of a recombinant inbred line (RIL) population of rice, generated using new sequencing technology. The quality of the map was assessed by validating the positions of several cloned genes including GS3 and GW5/qSW5, two major QTLs for grain length and grain width respectively, and OsC1, a qualitative trait locus for pigmentation. In all the cases the loci could be precisely resolved to the bins where the genes are located, indicating high quality and accuracy of the map. The SNP map was used to perform QTL analysis for yield and three yield-component traits, number of tillers per plant, number of grains per panicle and grain weight, using data from field trials conducted over years, in comparison to QTL mapping based on RFLPs/SSRs. The SNP map detected more QTLs especially for grain weight, with precise map locations, demonstrating advantages in detecting power and resolution relative to the RFLP/SSR map. Thus this study provided an example for ultra-high density map construction using sequencing technology. Moreover, the results obtained are helpful for understanding the genetic bases of the yield traits and for fine mapping and cloning of QTLs
    corecore