98 research outputs found

    Evidence for Positive Selection on the Osteogenin (BMP3) Gene in Human Populations

    Get PDF
    BACKGROUND: Human skeletal system has evolved rapidly since the dispersal of modern humans from Africa, potentially driven by selection and adaptation. Osteogenin (BMP3) plays an important role in skeletal development and bone osteogenesis as an antagonist of the osteogenic bone morphogenetic proteins, and negatively regulates bone mineral density. METHODOLOGY/PRINCIPAL FINDINGS: Here, we resequenced the BMP3 gene from individuals in four geographically separated modern human populations. Features supportive of positive selection in the BMP3 gene were found including the presence of an excess of nonsynonymous mutations in modern humans, and a significantly lower genetic diversity that deviates from neutrality. The prevalent haplotypes of the first exon region in Europeans demonstrated features of long-range haplotype homogeneity. In contrast with findings in European, the derived allele SNP Arg192Gln shows higher extended haplotype homozygosity in East Asian. The worldwide allele frequency distribution of SNP shows not only a high-derived allele frequency in Asians, but also in Americans, which is suggestive of functional adaptation. CONCLUSIONS/SIGNIFICANCE: In conclusion, we provide evidence for recent positive selection operating upon a crucial gene in skeletal development, which may provide new insight into the evolution of the skeletal system and bone development

    Immune Events Associated with High Level Protection against Schistosoma japonicum Infection in Pigs Immunized with UV-Attenuated Cercariae

    Get PDF
    BACKGROUND: The vaccination of radiation-attenuated Schistosoma japonicum cercariae can induce effective protection in artiodactyl, but the immune events related to protective immunity are not fully understood. To provide a paradigm for a human recombinant antigen vaccine, we have undertaken a vaccination and challenge experiment in pigs, which was recognized as an appropriate animal model in this type of study because of their similarity to human in immunology, and investigated the relative immune events induced by the radiation-attenuated S. japonicum cercariae. METHODS AND FINDINGS: We found that pigs immunized once with 400 µw UV-irradiated cercariae exhibited 63.84% and 71.82% reductions in worm burden and hepatic eggs respectively. Protective immunity in vaccinated pigs was associated with high level productions of IgM, total IgG, IgG1 and IgG2; IgG2 was significantly increased in the acute infection. IFN-γ levels could be elicited by immunization. At week 6 post-infection, IFN-γ, IL-4 and IL-10 levels also showed a dramatic rise synchronously in vaccinated pigs. Moreover, the granzyme b, nk-lysin, ifnγ, il4 and il10 mRNA levels in early skin-draining lymph nodes of immunized pigs were higher than those in pigs with non-irradiated cercariae infection. In addition, cytotoxicity-related genes in the mesenteric lymph nodes were significantly upregulated in vaccinated pigs in the acute infection. CONCLUSION/SIGNIFICANCE: Our results demonstrated that IFN-γ and IgG2 antibody production, as well as genes related to cytotoxicity are associated with the high level protection induced by UV-irradiated Schistosoma japonicum vaccine. These findings indicated that optimal vaccination against S. japonicum required the induction of IFN-γ, IgG2 antibody related to Th1 responses and cytotoxicity effect

    EFFECTS OF LMWOA ON BIODEGRADATION OF PHENANTHRENE STUDIED BY FLUORIMETRY

    No full text
    Conference Name:15th International Symposium on Bioluminescence and Chemiluminescence. Conference Address: Shanghai, PEOPLES R CHINA. Time:MAY 13-17, 2008

    Photoactivatable RNAi for cancer gene therapy triggered by near-infrared-irradiated single-walled carbon nanotubes

    No full text
    Xueling Ren, Jing Lin, Xuefang Wang, Xiao Liu, Erjuan Meng, Rui Zhang, Yanxiao Sang, Zhenzhong Zhang Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China Abstract: The efficacy of RNA interference (RNAi)-based cancer gene therapy is limited by its unexpected side effects, thus necessitating a strategy to precisely trigger conditional gene knockdown. In this study, we engineered a novel photoactivatable RNAi system, named as polyetherimide-modified single-wall carbon nanotube (PEI-SWNT)/pHSP-shT, that enables optogenetic control of targeted gene suppression in tumor cells. PEI-SWNT/pHSP-shT comprises a stimulus-responsive nanocarrier (PEI-SWNT), and an Hsp70B'-promoter-driven RNAi vector (pHSP-shT). In response to near-infrared (NIR) light irradiation, heating of PEI-SWNT in breast MCF-7 cells triggered gene knockdown targeting human telomerase reverse transcriptase through RNAi, with the gene-knockdown activity capable of being switched off by extinguishing the NIR. Furthermore, we demonstrated that the photoactivatable RNAi system exhibited higher antitumor activity by combining gene therapy and photothermal therapy, both in vitro and in vivo. Optogenetic control of RNAi based on an NIR-activated nanocarrier will potentially facilitate improved understanding of molecular-targeted gene therapy in human malignant tumors. Keywords: near-infrared light response, SWNT, RNAi, Hsp70B' promote
    • …
    corecore