95 research outputs found

    Heme oxygenase-1 plays a pro-life role in experimental brain stem death via nitric oxide synthase I/protein kinase G signaling at rostral ventrolateral medulla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite its clinical importance, a dearth of information exists on the cellular and molecular mechanisms that underpin brain stem death. A suitable neural substrate for mechanistic delineation on brain stem death resides in the rostral ventrolateral medulla (RVLM) because it is the origin of a life-and-death signal that sequentially increases (pro-life) and decreases (pro-death) to reflect the advancing central cardiovascular regulatory dysfunction during the progression towards brain stem death in critically ill patients. The present study evaluated the hypothesis that heme oxygnase-1 (HO-1) may play a pro-life role as an interposing signal between hypoxia-inducible factor-1 (HIF-1) and nitric oxide synthase I (NOS I)/protein kinase G (PKG) cascade in RVLM, which sustains central cardiovascular regulatory functions during brain stem death.</p> <p>Methods</p> <p>We performed cardiovascular, pharmacological, biochemical and confocal microscopy experiments in conjunction with an experimental model of brain stem death that employed microinjection of the organophosphate insecticide mevinphos (Mev; 10 nmol) bilaterally into RVLM of adult male Sprague-Dawley rats.</p> <p>Results</p> <p>Western blot analysis coupled with laser scanning confocal microscopy revealed that augmented HO-1 expression that was confined to the cytoplasm of RVLM neurons occurred preferentially during the pro-life phase of experimental brain stem death and was antagonized by immunoneutralization of HIF-1α or HIF-1β in RVLM. On the other hand, the cytoplasmic presence of HO-2 in RVLM neurons manifested insignificant changes during both phases. Furthermore, immunoneutralization of HO-1 or knockdown of <it>ho-1 </it>gene in RVLM blunted the augmented life-and-death signals exhibited during the pro-life phase. Those pretreatments also blocked the upregulated pro-life NOS I/PKG signaling without affecting the pro-death NOS II/peroxynitrite cascade in RVLM.</p> <p>Conclusions</p> <p>We conclude that transcriptional upregulation of HO-1 on activation by HIF-1 in RVLM plays a preferential pro-life role by sustaining central cardiovascular regulatory functions during brain stem death via upregulation of NOS I/PKG signaling pathway. Our results further showed that the pro-dead NOS II/peroxynitrite cascade in RVLM is not included in this repertoire of cellular events.</p

    The Prognostic Value of Tumor-Infiltrating Neutrophils in Gastric Adenocarcinoma after Resection

    Get PDF
    Background: Several pieces of evidence indicate that tumor-infiltrating neutrophils (TINs) are correlated to tumor progression. In the current study, we explore the relationship between TINs and clinicopathological features of gastric adenocarcinoma patients. Furthermore, we investigated the prognostic value of TINs. Patients and Methods: The study was comprised of two groups, training group (115 patients) and test group (97 patients). Biomarkers (intratumoral CD15+ neutrophils) were assessed by immunohistochemistry. The relationship between clinicopathological features and patient outcome were evaluated using Cox regression and Kaplan-Meier analysis. Results: Immunohistochemical detection showed that the tumor-infiltrating neutrophils (TINs) in the training group ranged from 0.00–115.70 cells/high-power microscopic field (HPF) and the median number was 21.60 cells/HPF. Based on the median number, the patients were divided into high and low TINs groups. Chi-square test analysis revealed that the density of CD15+ TINs was positively associated with lymph node metastasis (p = 0.024), distance metastasis (p = 0.004) and UICC (International Union Against Cancer) staging (p = 0.028). Kaplan-Meier analysis showed that patients with a lower density of TINs had a better prognosis than patients with a higher density of TINs (p = 0.002). Multivariate Cox’s analysis showed that the density of CD15+ TINs was an independent prognostic factor for overall survival of gastric adenocarcinoma patients. Using another 97 patients as a test group and basing on the median number of TINs (21.60 cells/HPF) coming from th

    Intrathecal lidocaine pretreatment attenuates immediate neuropathic pain by modulating Nav1.3 expression and decreasing spinal microglial activation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intrathecal lidocaine reverses tactile allodynia after nerve injury, but whether neuropathic pain is attenuated by intrathecal lidocaine pretreatment is uncertain.</p> <p>Methods</p> <p>Sixty six adult male Sprague-Dawley rats were divided into three treatment groups: (1) sham (Group S), which underwent removal of the L<sub>6 </sub>transverse process; (2) ligated (Group L), which underwent left L<sub>5 </sub>spinal nerve ligation (SNL); and (3) pretreated (Group P), which underwent L<sub>5 </sub>SNL and was pretreated with intrathecal 2% lidocaine (50 μl). Neuropathic pain was assessed based on behavioral responses to thermal and mechanical stimuli. Expression of sodium channels (Nav<sub>1.3 </sub>and Nav<sub>1.8</sub>) in injured dorsal root ganglia and microglial proliferation/activation in the spinal cord were measured on post-operative days 3 (POD<sub>3</sub>) and 7 (POD<sub>7</sub>).</p> <p>Results</p> <p>Group L presented abnormal behavioral responses indicative of mechanical allodynia and thermal hyperalgesia, exhibited up-regulation of Nav<sub>1.3 </sub>and down-regulation of Nav<sub>1.8</sub>, and showed increased microglial activation. Compared with ligation only, pretreatment with intrathecal lidocaine before nerve injury (Group P), as measured on POD<sub>3</sub>, palliated both mechanical allodynia (<it>p </it>< 0.01) and thermal hyperalgesia (<it>p </it>< 0.001), attenuated Nav<sub>1.3 </sub>up-regulation (<it>p </it>= 0.003), and mitigated spinal microglial activation (<it>p </it>= 0.026) by inhibiting phosphorylation (activation) of p38 MAP kinase (<it>p </it>= 0.034). p38 activation was also suppressed on POD<sub>7 </sub>(<it>p </it>= 0.002).</p> <p>Conclusions</p> <p>Intrathecal lidocaine prior to SNL blunts the response to noxious stimuli by attenuating Nav<sub>1.3 </sub>up-regulation and suppressing activation of spinal microglia. Although its effects are limited to 3 days, intrathecal lidocaine pretreatment can alleviate acute SNL-induced neuropathic pain.</p

    Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction

    Get PDF
    Achieving spatiotemporal control of molecular self-assembly associated with actuation of biological functions inside living cells remains a challenge owing to the complexity of the cellular environments and the lack of characterization tools. We present, for the first time, the organelle-localized self-assembly of a peptide amphiphile as a powerful strategy for controlling cellular fate. A phenylalanine dipeptide (FF) with a mitochondria-targeting moiety, triphenyl phosphonium (Mito-FF), preferentially accumulates inside mitochondria and reaches the critical aggregation concentration to form a fibrous nanostructure, which is monitored by confocal laser scanning microscopy and transmission electron microscopy. The Mito-FF fibrils induce mitochondrial dysfunction via membrane disruption to cause apoptosis. The organelle-specific supramolecular system provides a new opportunity for therapeutics and in-depth investigations of cellular functions.clos

    Bcl-2 Inhibits the Innate Immune Response during Early Pathogenesis of Murine Congenital Muscular Dystrophy

    Get PDF
    Laminin α2 (LAMA2)-deficient congenital muscular dystrophy is a severe, early-onset disease caused by abnormal levels of laminin 211 in the basal lamina leading to muscle weakness, transient inflammation, muscle degeneration and impaired mobility. In a Lama2-deficient mouse model for this disease, animal survival is improved by muscle-specific expression of the apoptosis inhibitor Bcl-2, conferred by a MyoD-hBcl-2 transgene. Here we investigated early disease stages in this model to determine initial pathological events and effects of Bcl-2 on their progression. Using quantitative immunohistological and mRNA analyses we show that inflammation occurs very early in Lama2-deficient muscle, some aspects of which are reduced or delayed by the MyoD-hBcl-2 transgene. mRNAs for innate immune response regulators, including multiple Toll-like receptors (TLRs) and the inflammasome component NLRP3, are elevated in diseased muscle compared with age-matched controls expressing Lama2. MyoD-hBcl-2 inhibits induction of TLR4, TLR6, TLR7, TLR8 and TLR9 in Lama2-deficient muscle compared with non-transgenic controls, and leads to reduced infiltration of eosinophils, which are key death effector cells. This congenital disease model provides a new paradigm for investigating cell death mechanisms during early stages of pathogenesis, demonstrating that interactions exist between Bcl-2, a multifunctional regulator of cell survival, and the innate immune response

    Muscular dystrophy in the mdx mouse is a severe myopathy compounded by hypotrophy, hypertrophy and hyperplasia

    Get PDF
    Background Preclinical testing of potential therapies for Duchenne muscular dystrophy (DMD) is conducted predominantly of the mdx mouse. But lack of a detailed quantitative description of the pathology of this animal limits our ability to evaluate the effectiveness of putative therapies or their relevance to DMD. Methods Accordingly, we have measured the main cellular components of muscle growth and regeneration over the period of postnatal growth and early pathology in mdx and wild-type (WT) mice; phalloidin binding is used as a measure of fibre size, myonuclear counts and BrdU labelling as records of myogenic activity. Results We confirm a two-phase postnatal growth pattern in WT muscle: first, increase in myonuclear number over weeks 1 to 3, then expansion of myonuclear domain. Mdx muscle growth lags behind that of WT prior to overt signs of pathology. Fibres are smaller, with fewer myonuclei and smaller myonuclear domains. Moreover, satellite cells are more readily detached from mdx than WT muscle fibres. At 3 weeks, mdx muscles enter a phase of florid myonecrosis, accompanied by concurrent regeneration of an intensity that results in complete replacement of pre-existing muscle over the succeeding 3 to 4 weeks. Both WT and mdx muscles attain maximum size by 12 to 14 weeks, mdx muscle fibres being up to 50% larger than those of WT as they become increasingly branched. Mdx muscle fibres also become hypernucleated, containing twice as many myonuclei per sarcoplasmic volume, as those of WT, the excess corresponding to the number of centrally placed myonuclei. Conclusions The best-known consequence of lack of dystrophin that is common to DMD and the mdx mouse is the conspicuous necrosis and regeneration of muscle fibres. We present protocols for measuring this in terms both of loss of muscle nuclei previously labelled with BrdU and of the intensity of myonuclear labelling with BrdU administered during the regeneration period. Both measurements can be used to assess the efficacy of putative antinecrotic agents. We also show that lack of dystrophin is associated with a number of previously unsuspected abnormalities of muscle fibre structure and function that do not appear to be directly associated with myonecrosis

    Molecular Characterization of a Strawberry FaASR Gene in Relation to Fruit Ripening

    Get PDF
    BACKGROUND: ABA-, stress- and ripening-induced (ASR) proteins have been reported to act as a downstream component involved in ABA signal transduction. Although much attention has been paid to the roles of ASR in plant development and stress responses, the mechanisms by which ABA regulate fruit ripening at the molecular level are not fully understood. In the present work, a strawberry ASR gene was isolated and characterized (FaASR), and a polyclonal antibody against FaASR protein was prepared. Furthermore, the effects of ABA, applied to two different developmental stages of strawberry, on fruit ripening and the expression of FaASR at transcriptional and translational levels were investigated. METHODOLOGY/PRINCIPAL FINDINGS: FaASR, localized in the cytoplasm and nucleus, contained 193 amino acids and shared common features with other plant ASRs. It also functioned as a transcriptional activator in yeast with trans-activation activity in the N-terminus. During strawberry fruit development, endogenous ABA content, levels of FaASR mRNA and protein increased significantly at the initiation of ripening at a white (W) fruit developmental stage. More importantly, application of exogenous ABA to large green (LG) fruit and W fruit markedly increased endogenous ABA content, accelerated fruit ripening, and greatly enhanced the expression of FaASR transcripts and the accumulation of FaASR protein simultaneously. CONCLUSIONS: These results indicate that FaASR may be involved in strawberry fruit ripening. The observed increase in endogenous ABA content, and enhanced FaASR expression at transcriptional and translational levels in response to ABA treatment might partially contribute to the acceleration of strawberry fruit ripening

    Identification of human renal cell carcinoma associated genes by suppression subtractive hybridization

    Get PDF
    Renal cell carcinoma (RCC) are frequently chemo- and radiation resistant. Thus, there is a need for identifying biological features of these cells that could serve as alternative therapeutic targets. We performed suppression subtractive hybridization (SSH) on patient-matched normal renal and RCC tissue to identify variably regulated genes. 11 genes were strongly up-regulated or selectively expressed in more than one RCC tissue or cell line. Screening of filters containing cancer-related cDNAs confirmed overexpression of 3 of these genes and 3 additional genes were identified. These 14 differentially expressed genes, only 6 of which have previously been associated with RCC, are related to tumour growth/survival (EGFR, cyclin D1, insulin-like growth factor-binding protein-1 and a MLRQ sub-unit homologue of the NADH:ubiquinone oxidoreductase complex), angiogenesis (vascular endothelial growth factor, endothelial PAS domain protein-1, ceruloplasmin, angiopoietin-related protein 2) and cell adhesion/motility (protocadherin 2, cadherin 6, autotaxin, vimentin, lysyl oxidase and semaphorin G). Since some of these genes were overexpressed in 80–90% of RCC tissues, it is important to evaluate their suitability as therapeutic targets. © 2001 Cancer Research Campaig
    corecore