334 research outputs found

    RNA: REUSABLE NEURON ARCHITECTURE FOR ON-CHIP ELECTROCARDIOGRAM CLASSIFICATION AND MACHINE LEARNING

    Get PDF
    Artificial neural networks (ANN) offer tremendous promise in classifying electrocardiogram (ECG) for detection and diagnosis of cardiovascular diseases. In this thesis, we propose a reusable neuron architecture (RNA) to enable an efficient and cost-effective ANN-based ECG processing by multiplexing the same physical neurons for both feed-forward and back-propagation stages. RNA further conserves the area and resources of the chip and reduces power dissipation by coalescing different layers of the neural network into a single layer. Moreover, the microarchitecture of each RNA neuron has been optimized to maximize the degree of hardware reusability by fusing multiple two-input multipliers and a multi-input adder into one two-input multiplier and one two-input adder. With RNA, we demonstrated a hardware implementation of a three-layer 51-30-12 artificial neural network using only thirty physical RNA neurons.A quantitative design space exploration in area, power dissipation, and speed between the proposed RNA and three other implementations representative of different reusable hardware strategies is presented and discussed. An RNA ASIC was implemented using 45nm CMOS technology and verified on a Xilinx Virtex-5 FPGA board. Compared with an equivalent software implementation in C executed on a mainstream embedded microprocessor, the RNA ASIC improves both the training speed and the energy efficiency by three orders of magnitude, respectively. The real-time and functional correctness of RNA was verified using real ECG signals from the MIT-BIH arrhythmia database

    Tthe stiffness properties of pure PDMS elastomers and stiffness tuning of magnetorheological PDMS elastomers

    Get PDF
    The aim of this independent study is to find a way to maximize the change in Elastic Modulus (stiffness) induced by applying magnetic fields to magnetorheological elastomer (MRE) devices made by combining Polydimethylsiloxane (PDMS) elastomers with metal particles. In order to achieve this, I tried changing conditions that I expected to impact the elastic modulus change induced by applying magnets to MREs, including MRE thickness, composition (wt% of carbonyl iron particles) and basal PDMS composition

    Contouring Accuracy Improvement Using an Adaptive Feedrate Planning Method for CNC Machine Tools

    Get PDF
    AbstractThe reduction of contour error plays an important role in achieving high accuracy machining. To reduce contour error, most of previous studies have focused on developing advanced control strategies. As an alternative strategy, contouring accuracy improvement using an adaptive feedrate planning method is proposed in this paper. First, a typical PID controller is adopted to build the contour error model, from which the feedrate can be scheduled in the contour error violated zones. Then, the relations between each constraint and the cutter tip feedrate are derived. After that, a linear programming model is applied to obtain the optimal feedrate profile on the sampling positions of the given tool path. Finally, illustrated examples are given to validate the feasibility and applicability of the proposed feedrate planning method. The comparison results show that the proposed method has a significant effect on improving contouring accuracy

    Free-form surface reconstruction based on NURBS to serial cross-sections

    Full text link

    Energy mechanism for the instability of liquid jets with thermocapillarity

    Get PDF
    Xu and Davis [J. Fluid Mech. 161, 1-25 (1985)] examined the stability of long axisymmetric liquid jet subjected to an axial temperature gradient, finding capillary, surface-wave, and hydrodynamic modes. They showed that capillary breakup can be retarded or even suppressed for a small Prandtl number (Pr= 1). In the present work, the energy mechanism is carried out for these three kinds of flow instabilities, and the mechanism of suppressing capillary breakup is clarified. When the Reynolds number (R-B) is not large, the work done by the pressure on the free surface (P-S) is the main energy source of the capillary instability. At small Pr and large Bi, the phase difference between the radial velocity and surface deformation increases with R-B, leading to the decrease in P-S, which prevents the occurrence of capillary breakup. Meanwhile, the work done by thermocapillary force becomes the main energy source, making hydrodynamic modes unstable. The perturbation flow fields are displayed, which shows that the temperature fluctuations of three modes differ from each other

    Generation and Characterization of Novel Human IRAS Monoclonal Antibodies

    Get PDF
    Imidazoline receptors were first proposed by Bousquet et al., when they studied antihypertensive effect of clonidine. A strong candidate for I1R, known as imidazoline receptor antisera-selected protein (IRAS), has been cloned from human hippocampus. We reported that IRAS mediated agmatine-induced inhibition of opioid dependence in morphine-dependent cells. To elucidate the functional and structure properties of I1R, we developed the newly monoclonal antibody against the N-terminal hIRAS region including the PX domain (10–120aa) through immunization of BALB/c mice with the NusA-IRAS fusion protein containing an IRAS N-terminal (10–120aa). Stable hybridoma cell lines were established and monoclonal antibodies specifically recognized full-length IRAS proteins in their native state by immunoblotting and immunoprecipitation. Monoclonal antibodies stained in a predominantly punctate cytoplasmic pattern when applied to IRAS-transfected HEK293 cells by indirect immunofluorescence assays and demonstrated excellent reactivity in flow immunocytometry. These monoclonal antibodies will provide powerful reagents for the further investigation of hIRAS protein functions

    Effects of Different Production Processes on the Quality and Flavor of Soybean Oil as Evaluated by Electronic Nose, HS-SPME-GC-MS and HS-GC-IMS

    Get PDF
    In order to explore the effects of different production processes (cold pressing, leaching, and their combination) on the quality and flavor of soybean oil of third grade, the physicochemical properties and fatty acid composition of the three soybean oils were determined, and their volatile compounds were identified and analyzed by electronic nose, headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS), and headspace-gas chromatography-ion mobility spectroscopy (HS-GC-IMS). Differential analysis of the volatile compound data among the soybean oils was performed by clustering heatmap analysis, principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). The results showed that cold-pressed soybean oil had the lowest moisture content; the peroxide value of leached soybean oil was significantly higher and its color was the darkest. Fragrant soybean oil had the highest linoleic acid content and a higher nutritional value; and among the detected volatile components, alcohols, aldehydes and pyrazine compounds mainly contributed to the formation of soybean oil flavor, and the reasons for the formation of some flavor compounds were clarified. Finally, 45 volatile compounds with high contributions were selected by OPLS-DA, and a reliable model was constructed for identifying fragrant soybean oil. In addition, a correlation was found between the quality and flavor of soybean oil

    Effect of quercetin on the transport of ritonavir to the central nervous system in vitro and in vivo

    Get PDF
    The aim of this study was to identify an effective flavonoid that could improve the intracellular accumulation of ritonavir in human brain-microvascular endothelial cells (HBMECs). An in vivo experiment on Sprague-Dawley rats was then designed to further determine the flavonoid’s impact on the pharmacokinetics and tissue distribution of ritonavir. In the accumulation assay, the intracellular level of ritonavir was increased in the presence of 25 mmol L–1of flavonoids in HBMECs. Quercetin showed the strongest effect by improving the intracellular accumulation of ritonavir by 76.9 %. In the pharmacokinetic study, the presence of quercetin in the co-administration group and in the pretreatment group significantly decreased the area under the plasma concentration-time curve (AUC0-t) of ritonavir by 42.2 % (p < 0.05) and 53.5 % (p < 0.01), and decreased the peak plasma concentration (Cmax) of ritonavir by 23.1 % (p < 0.05) and 45.8 % (p < 0.01), respectively, compared to the control group (ritonavir alone). In the tissue distribution study, the ritonavir concentration in the brain was significantly increased 2-fold (p < 0.01), during the absorption phase (1 h) and was still significantly higher (p < 0.05) during the distribution phase (6 h) in the presence of quercetin
    corecore