6,199 research outputs found

    A joint design scheme for identification and control

    Get PDF
    A design scheme for simultaneously solving for models and controllers based on a robust performance criterion is proposed. A suboptimal solution is provided.published_or_final_versio

    DancingLines: An Analytical Scheme to Depict Cross-Platform Event Popularity

    Full text link
    Nowadays, events usually burst and are propagated online through multiple modern media like social networks and search engines. There exists various research discussing the event dissemination trends on individual medium, while few studies focus on event popularity analysis from a cross-platform perspective. Challenges come from the vast diversity of events and media, limited access to aligned datasets across different media and a great deal of noise in the datasets. In this paper, we design DancingLines, an innovative scheme that captures and quantitatively analyzes event popularity between pairwise text media. It contains two models: TF-SW, a semantic-aware popularity quantification model, based on an integrated weight coefficient leveraging Word2Vec and TextRank; and wDTW-CD, a pairwise event popularity time series alignment model matching different event phases adapted from Dynamic Time Warping. We also propose three metrics to interpret event popularity trends between pairwise social platforms. Experimental results on eighteen real-world event datasets from an influential social network and a popular search engine validate the effectiveness and applicability of our scheme. DancingLines is demonstrated to possess broad application potentials for discovering the knowledge of various aspects related to events and different media

    An incremental shifting vector approach for reliability-based design optimization

    Full text link
    © 2015, Springer-Verlag Berlin Heidelberg. This paper proposes a decoupling algorithm for reliability-based design optimization (RBDO) with high performance in terms of efficiency and convergence, which provides an effective tool for reliability design of many complex structures. The algorithm proceeds by performing a shifting vector calculation and then solving a deterministic design optimization in each step, and eventually converges to the optimal solution. An incremental shifting strategy is proposed to ensure stable convergence in the iteration process. In each step, the shifting vector preserves the information from the previous step, and only an adjustment is made for it through a shifting vector increment. A computation method is given for the shifting vector increment, avoiding solving an optimization problem during the reliability analysis and thus greatly reducing the computational cost of the iteration process. Six numerical examples and two engineering applications are presented to validate the effectiveness of the method proposed in this paper

    Characterisation of diesel vehicle emissions and determination of remote sensing cutpoints for diesel high-emitters

    Full text link
    © 2019 Elsevier Ltd Diesel vehicles are a major source of air pollutants in cities and have caused significant health risks to the public globally. This study used both on-road remote sensing and transient chassis dynamometer to characterise emissions of diesel light goods vehicles. A large sample size of 183 diesel vans were tested on a transient chassis dynamometer to evaluate the emission levels of in-service diesel vehicles and to determine a set of remote sensing cutpoints for diesel high-emitters. The results showed that 79% and 19% of the Euro 4 and Euro 5 diesel vehicles failed the transient cycle test, respectively. Most of the high-emitters failed the NO limits, while no vehicle failed the HC limits and only a few vehicles failed the CO limits. Vehicles that failed NO limits occurred in both old and new vehicles. NO/CO2 ratios of 57.30 and 22.85 ppm/% were chosen as the remote sensing cutpoints for Euro 4 and Euro 5 high-emitters, respectively. The cutpoints could capture a Euro 4 and Euro 5 high-emitter at a probability of 27% and 57% with one snapshot remote sensing measurement, while only producing 1% of false high-emitter detections. The probability of high-emitting events was generally evenly distributed over the test cycle, indicating that no particular driving condition produced a higher probability of high-emitting events. Analysis on the effect of cutpoints on real-driving diesel fleet was carried out using a three-year remote sensing program. Results showed that 36% of Euro 4 and 47% of Euro 5 remote sensing measurements would be detected as high-emitting using the proposed cutpoints. In-service diesel vehicles emit low CO and HC but high NO

    Multiple-image encryption by compressive holography

    Get PDF
    We present multiple-image encryption (MIE) based on compressive holography. In the encryption, a holographic technique is employed to record multiple images simultaneously to form a hologram. The two-dimensional Fourier data of the hologram are then compressed by nonuniform sampling, which gives rise to compressive encryption. Decryption of individual images is cast into a minimization problem. The minimization retains the sparsity of recovered images in the wavelet basis. Meanwhile, total variation regularization is used to preserve edges in the reconstruction. Experiments have been conducted using holograms acquired by optical scanning holography as an example. Computer simulations of multiple images are subsequently demonstrated to illustrate the feasibility of the MIE scheme.published_or_final_versio

    Tackling nitric oxide emissions from dominant diesel vehicle models using on-road remote sensing technology

    Full text link
    © 2018 Elsevier Ltd Remote sensing provides a rapid detection of vehicle emissions under real driving condition. Remote sensing studies showed that diesel nitrogen oxides emissions changed little or were even increasing in recent years despite the tightened emission standards. To more accurately and fairly evaluate the emission trends, it is hypothesized that analysis should be detailed for individual vehicle models as each model adopted different emissions control technologies and retrofitted the engine/vehicle at different time. Therefore, this study was aimed to investigate the recent nitric oxide (NO) emission trends of the dominant diesel vehicle models using a large remote sensing dataset collected in Hong Kong. The results showed that the diesel vehicle fleet was dominated by only seven models, accounting for 78% of the total remote sensing records. Although each model had different emission levels and trends, generally all the dominant models showed a steady decrease or stable level in the fuel based NO emission factors (g/kg fuel) over the period studied except for BaM1 and BdM2. A significant increase was observed for the BaM1 2.49 L and early 2.98 L models during 2005–2011, which we attribute to the change in the diesel fuel injection technology. However, the overall mean NO emission factor of all the vehicles was stable during 1991–2006 and then decreased steadily during 2006–2016, in which the emission trends of individual models were averaged out and thus masked. Nevertheless, the latest small, medium and heavy diesel vehicles achieved similar NO emission factors due to the converging of operation windows of the engine and emission control devices. The findings suggested that the increasingly stringent European emission standards were not very effective in reducing the NO emissions of some diesel vehicle models in the real world. The European emission regulations were not very effective in reducing the NO emissions from some diesel vehicle models in the real world

    Schistosomiasis Research in the Dongting Lake Region and Its Impact on Local and National Treatment and Control in China

    Get PDF
    Schistosomiasis is a chronic and debilitating parasitic disease that has often been neglected because it is a disease of poverty, affecting poor rural communities in the developing world. This is not the case in the People's Republic of China (PRC), where the disease, caused by Schistosoma japonicum, has long captured the attention of the Chinese authorities who have, over the past 50–60 years, undertaken remarkably successful control programs that have substantially reduced the schistosomiasis disease burden. The Dongting Lake region in Hunan province is one of the major schistosome-endemic areas in the PRC due to its vast marshland habitats for the Oncomelania snail intermediate hosts of S. japonicum. Along with social, demographic, and other environmental factors, the recent completion and closure of the Three Gorges dam will most likely increase the range of these snail habitats, with the potential for re-emergence of schistosomiasis and increased transmission in Hunan and other schistosome-endemic provinces being a particular concern. In this paper, we review the history and the current status of schistosomiasis control in the Dongting Lake region. We explore the epidemiological factors contributing to S. japonicum transmission there, and summarise some of the key research findings from studies undertaken on schistosomiasis in Hunan province over the past 10 years. The impact of this research on current and future approaches for sustainable integrated control of schistosomiasis in this and other endemic areas in the PRC is emphasised
    • …
    corecore