24 research outputs found

    Effects of Dibutyryl Cyclic-AMP on Survival and Neuronal Differentiation of Neural Stem/Progenitor Cells Transplanted into Spinal Cord Injured Rats

    Get PDF
    Neural stem/progenitor cells (NSPCs) have great potential as a cell replacement therapy for spinal cord injury. However, poor control over transplant cell differentiation and survival remain major obstacles. In this study, we asked whether dibutyryl cyclic-AMP (dbcAMP), which was shown to induce up to 85% in vitro differentiation of NSPCs into neurons would enhance survival of transplanted NSPCs through prolonged exposure either in vitro or in vivo through the controlled release of dbcAMP encapsulated within poly(lactic-co-glycolic acid) (PLGA) microspheres and embedded within chitosan guidance channels. NSPCs, seeded in fibrin scaffolds within the channels, differentiated in vitro to betaIII-tubulin positive neurons by immunostaining and mRNA expression, in response to dbcAMP released from PLGA microspheres. After transplantation in spinal cord injured rats, the survival and differentiation of NSPCs was evaluated. Untreated NSPCs, NSPCs transplanted with dbcAMP-releasing microspheres, and NSPCs pre-differentiated with dbcAMP for 4 days in vitro were transplanted after rat spinal cord transection and assessed 2 and 6 weeks later. Interestingly, NSPC survival was highest in the dbcAMP pre-treated group, having approximately 80% survival at both time points, which is remarkable given that stem cell transplantation often results in less than 1% survival at similar times. Importantly, dbcAMP pre-treatment also resulted in the greatest number of in vivo NSPCs differentiated into neurons (37±4%), followed by dbcAMP-microsphere treated NSPCs (27±14%) and untreated NSPCs (15±7%). The reverse trend was observed for NSPC-derived oligodendrocytes and astrocytes, with these populations being highest in untreated NSPCs. This combination strategy of stem cell-loaded chitosan channels implanted in a fully transected spinal cord resulted in extensive axonal regeneration into the injury site, with improved functional recovery after 6 weeks in animals implanted with pre-differentiated stem cells in chitosan channels

    Meta-analysis of pre-clinical studies of early decompression in acute spinal cord injury:a battle of time and pressure

    Get PDF
    The use of early decompression in the management of acute spinal cord injury (SCI) remains contentious despite many pre-clinical studies demonstrating benefits and a small number of supportive clinical studies. Although the pre-clinical literature favours the concept of early decompression, translation is hindered by uncertainties regarding overall treatment efficacy and timing of decompression.We performed meta-analysis to examine the pre-clinical literature on acute decompression of the injured spinal cord. Three databases were utilised; PubMed, ISI Web of Science and Embase. Our inclusion criteria consisted of (i) the reporting of efficacy of decompression at various time intervals (ii) number of animals and (iii) the mean outcome and variance in each group. Random effects meta-analysis was used and the impact of study design characteristics assessed with meta-regression.Overall, decompression improved behavioural outcome by 35.1% (95%CI 27.4-42.8; I(2)=94%, p<0.001). Measures to minimise bias were not routinely reported with blinding associated with a smaller but still significant benefit. Publication bias likely also contributed to an overestimation of efficacy. Meta-regression demonstrated a number of factors affecting outcome, notably compressive pressure and duration (adjusted r(2)=0.204, p<0.002), with increased pressure and longer durations of compression associated with smaller treatment effects. Plotting the compressive pressure against the duration of compression resulting in paraplegia in individual studies revealed a power law relationship; high compressive forces quickly resulted in paraplegia, while low compressive forces accompanying canal narrowing resulted in paresis over many hours.These data suggest early decompression improves neurobehavioural deficits in animal models of SCI. Although much of the literature had limited internal validity, benefit was maintained across high quality studies. The close relationship of compressive pressure to the rate of development of severe neurological injury suggests that pressure local to the site of injury might be a useful parameter determining the urgency of decompression

    Targeting Translational Successes through CANSORT-SCI: Using Pet Dogs To Identify Effective Treatments for Spinal Cord Injury.

    No full text
    Translation of therapeutic interventions for spinal cord injury (SCI) from laboratory to clinic has been historically challenging, highlighting the need for robust models of injury that more closely mirror the human condition. The high prevalence of acute, naturally occurring SCI in pet dogs provides a unique opportunity to evaluate expeditiously promising interventions in a population of animals that receive diagnoses and treatment clinically in a manner similar to persons with SCI, while adhering to National Institutes of Health guidelines for scientific rigor and transparent reporting. In addition, pet dogs with chronic paralysis are often maintained long-term by their owners, offering a similarly unique population for study of chronic SCI. Despite this, only a small number of studies have used the clinical dog model of SCI. The Canine Spinal Cord Injury Consortium (CANSORT-SCI) was recently established by a group of veterinarians and basic science researchers to promote the value of the canine clinical model of SCI. The CANSORT-SCI group held an inaugural meeting November 20 and 21, 2015 to evaluate opportunities and challenges to the use of pet dogs in SCI research. Key challenges identified included lack of familiarity with the model among nonveterinary scientists and questions about how and where in the translational process the canine clinical model would be most valuable. In light of these, we review the natural history, outcome, and available assessment tools associated with canine clinical SCI with emphasis on their relevance to human SCI and the translational process

    Targeting Translational Successes through CANSORT-SCI: Using Pet Dogs To Identify Effective Treatments for Spinal Cord Injury

    No full text
    Translation of therapeutic interventions for spinal cord injury (SCI) from laboratory to clinic has been historically challenging, highlighting the need for robust models of injury that more closely mirror the human condition. The high prevalence of acute, naturally occurring SCI in pet dogs provides a unique opportunity to evaluate expeditiously promising interventions in a population of animals that receive diagnoses and treatment clinically in a manner similar to persons with SCI, while adhering to National Institutes of Health guidelines for scientific rigor and transparent reporting. In addition, pet dogs with chronic paralysis are often maintained long-term by their owners, offering a similarly unique population for study of chronic SCI. Despite this, only a small number of studies have used the clinical dog model of SCI. The Canine Spinal Cord Injury Consortium (CANSORT-SCI) was recently established by a group of veterinarians and basic science researchers to promote the value of the canine clinical model of SCI. The CANSORT-SCI group held an inaugural meeting November 20 and 21, 2015 to evaluate opportunities and challenges to the use of pet dogs in SCI research. Key challenges identified included lack of familiarity with the model among nonveterinary scientists and questions about how and where in the translational process the canine clinical model would be most valuable. In light of these, we review the natural history, outcome, and available assessment tools associated with canine clinical SCI with emphasis on their relevance to human SCI and the translational process
    corecore