45 research outputs found

    Determination of isotope ratio in the divertor of JET-ILW by high-resolution H alpha spectroscopy: H-D experiment and implications for D-T experiment

    No full text
    The data of the H alpha high-resolution spectroscopy, collected on the multiple lines of sight, which cover the entire divertor space in poloidal cross-section, during the recent hydrogen-deuterium experiments in JET-ILW (ITER-like wall), are processed. A strong spatial inhomogeneity of the hydrogen concentration, H/(H + D), in divertor is found in many pulses. Namely, the H/(H + D) ratio may be lower in the inner divertor than that in the outer divertor by the values of 0.15-0.35, depending on the conditions of gas puffing and plasma heating. This effect suggests the necessity of spatially-resolved measurements of isotope ratio in the divertor in the upcoming deuterium-tritium experiments. Also, separation of the overlapped T alpha and D alpha spectral lines is shown to be a challenging task especially when the local Doppler-broadened (Gaussian) line shapes are noticeably distorted by the net inward flux of fast non-Maxwellian neutral atoms. We use the respective, formerly developed model of an asymmetric spectral line shape, while analysing the data of the first deuterium-tritium experiment in JET-C (carbon wall), and test the model via comparing the isotope ratio results with another diagnostic's measurements. This model is shown to increase the accuracy of tritium concentration measurements in the divertor

    Long-lived coupled peeling ballooning modes preceding ELMs on JET

    No full text
    In some JET discharges, type-I edge localised modes (ELMs) are preceded by a class of low-frequency oscillations (Perez et al 2004 Nucl. Fusion 44 609). While in many cases the ELM is triggered during the growth phase of this oscillation, it is also observed that this type of oscillation can saturate and last for several tens of ms until an ELM occurs. In order to identify the nature of these modes, a wide pre-ELM oscillation database, including detailed pedestal profile information, has been assembled and analysed in terms of MHD stability parameters. The existence domain of these pre-ELM oscillations and the statistical distribution of toroidal mode numbers (n) up to n = 16 have been mapped in ballooning alpha (alpha(ball)) and either edge current density (J(edge)) or pedestal collisionality (nu(ee,ped)*) coordinates and compared to linear MHD stability predictions. The pre-ELM oscillations are reliably observed when the J/alpha ratio is high enough for the pedestal to access the coupled peeling-ballooning (PB) domain (aka stability nose). Conversely, when the pedestal is found to be in or near the high-n ballooning domain (which is at low J/alpha ratio), ELMs are usually triggered promptly, i.e. with no detectable pre-ELM oscillations, or with pre-ELM oscillations only observable on ECE whose n appears to be too high to be resolved by the magnetics. Individual discharges can sometimes exhibit a fairly wide range of pre-ELM mode numbers, but for a wider database, the statistical n-number domains are found to be well ordered along the J - alpha stability boundary and behave as expected from PB theory: the higher the J/alpha ratio, the lower the mode's measured n tends to be. Within the measurement uncertainties, the measured n is usually found to be compatible with the most unstable n predicted by the linear stability code MISHKA1. These results confirm the earlier hypothesis that these modes are coupled peeling-ballooning modes, and extend and generalise to higher-mode numbers the work by Huysmans et al (1998 Nucl. Fusion 38 179), who identified the lowest n modes as pure external kink modes. Since the destabilisation of PB modes is widely accepted to give rise to ELMs, the mode saturation and delayed ELM triggering that is sometimes observed is rather unexpected. Possibilities to reconcile the extended lifetime of these modes with current ELM models are briefly discussed, but will require further investigation

    Diagnostic of fast-ion energy spectra and densities in magnetized plasmas

    No full text
    The measurement of the energy spectra and densities of alpha-particles and other fast ions are part of the ITER measurement requirements, highlighting the importance of energy-resolved energetic-particle measurements for the mission of ITER. However, it has been found in recent years that the velocity-space interrogation regions of the foreseen energetic-particle diagnostics do not allow these measurements directly. We will demonstrate this for gamma-ray spectroscopy (GRS), collective Thomson scattering (CTS), neutron emission spectroscopy and fast-ion D-alpha spectroscopy by invoking energy and momentum conservation in each case, highlighting analogies and differences between the different diagnostic velocity-space sensitivities. Nevertheless, energy spectra and densities can be inferred by velocity-space tomography which we demonstrate using measurements at JET and ASDEX Upgrade. The measured energy spectra agree well with corresponding simulations. At ITER, alpha-particle energy spectra and densities can be inferred for energies larger than 1.7 MeV by velocity-space tomography based on GRS and CTS. Further, assuming isotropy of the alpha-particles in velocity space, their energy spectra and densities can be inferred by 1D inversion of spectral single-detector measurements down to about 300 keV by CTS. The alpha-particle density can also be found by fitting a model to the CTS measurements assuming the alpha-particle distribution to be an isotropic slowing-down distribution

    Overview of the JET results

    No full text
    Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. \ua9 2011 IAEA, Vienna

    Overview of the JET results

    No full text
    Since the last IAEA Conference JET has been in operation for one year with a programmatic focus on the qualification of ITER operating scenarios, the consolidation of ITER design choices and preparation for plasma operation with the ITER-like wall presently being installed in JET. Good progress has been achieved, including stationary ELMy H-mode operation at 4.5 MA. The high confinement hybrid scenario has been extended to high triangularity, lower ρ*and to pulse lengths comparable to the resistive time. The steady-state scenario has also been extended to lower ρ*and ν*and optimized to simultaneously achieve, under stationary conditions, ITER-like values of all other relevant normalized parameters. A dedicated helium campaign has allowed key aspects of plasma control and H-mode operation for the ITER non-activated phase to be evaluated. Effective sawtooth control by fast ions has been demonstrated with3He minority ICRH, a scenario with negligible minority current drive. Edge localized mode (ELM) control studies using external n = 1 and n = 2 perturbation fields have found a resonance effect in ELM frequency for specific q95values. Complete ELM suppression has, however, not been observed, even with an edge Chirikov parameter larger than 1. Pellet ELM pacing has been demonstrated and the minimum pellet size needed to trigger an ELM has been estimated. For both natural and mitigated ELMs a broadening of the divertor ELM-wetted area with increasing ELM size has been found. In disruption studies with massive gas injection up to 50% of the thermal energy could be radiated before, and 20% during, the thermal quench. Halo currents could be reduced by 60% and, using argon/deuterium and neon/deuterium gas mixtures, runaway electron generation could be avoided. Most objectives of the ITER-like ICRH antenna have been demonstrated; matching with closely packed straps, ELM resilience, scattering matrix arc detection and operation at high power density (6.2 MW m-2) and antenna strap voltages (42 kV). Coupling measurements are in very good agreement with TOPICA modelling. \ua9 2011 IAEA, Vienna

    14 MeV calibration of JET neutron detectors-phase 1: Calibration and characterization of the neutron source

    No full text
    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances

    Investigation of deuterium trapping and release in the JET divertor during the third ILW campaign using TDS

    No full text
    Selected set of samples from JET ITER-Like Wall (JET-ILW) divertor tiles exposed in 2015-2016 has been analysed using Thermal Desorption Spectrometry (TDS). The deuterium (D) amounts obtained with TDS were compared with Nuclear Reaction Analysis (NRA). The highest amount of D was found on the top part of inner divertor which has regions with the thickest deposited layers as for divertor tiles removed in 2014. This area resides deep in the scrape-off layer and plasma configurations for the second (ILW-2, 2013-2014) and the third (ILW-3, 2015-2016) JET-ILW campaigns were similar. Agreement between TDS and NRA is good on the apron of Tile 1 and on the upper vertical region whereas on the lower vertical region of Tile 1 the NRA results are clearly smaller than the TDS results. Inner divertor Tile 3 has somewhat less D than Tiles 0 and 1, and the D amount decreases towards the lower part of the tile. The D retention at the divertor inner and outer corner regions is not symmetric as there is more D retention poloidally at the inner than at the outer divertor corner. In most cases the TDS spectra for the ILW-3 samples are different from the corresponding ILW-2 spectra because HD and D-2 release occurs at higher temperatures than from the ILW-2 samples indicating that the low energy traps have been emptied during the plasma operations and that D is either in the energetically deep traps or located deeper in the sample
    corecore