17 research outputs found
Peptide nanofiber scaffolds for multipotent stromal cell culturing
Self-assembled peptide nanofibers are versatile materials providing suitable platforms for regenerative medicine applications. This chapter describes the use of peptide nanofibers as extracellular matrix mimetic scaffolds for two-dimensional (2D) and three-dimensional (3D) multipotent stromal cell culture systems and procedures for in vitro experiments using these scaffolds. Preparation of 2D and 3D peptide nanofiber scaffolds and cell culturing procedures are presented as part of in vitro experiments including cell adhesion, viability, and spreading analysis. Analysis of cellular differentiation on peptide nanofiber scaffolds is described through immunocytochemistry, qRT-PCR, and other biochemical experiments towards osteogenic and chondrogenic lineage. © Springer Science+Business Media New York 2013
Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
The RNA-guided CRISPR-Cas9 nuclease from Streptococcus pyogenes (SpCas9) has been widely repurposed for genome editing1–4. High-fidelity (SpCas9-HF1) and enhanced specificity (eSpCas9(1.1)) variants exhibit substantially reduced off-target cleavage in human cells, but the mechanism of target discrimination and the potential to further improve fidelity were unknown5–9. Using single-molecule Förster resonance energy transfer (smFRET) experiments, we show that both SpCas9-HF1 and eSpCas9(1.1) are trapped in an inactive state10 when bound to mismatched targets. We find that a non-catalytic domain within Cas9, REC3, recognizes target complementarity and governs the HNH nuclease to regulate overall catalytic competence. Exploiting this observation, we designed a new hyper-accurate Cas9 variant (HypaCas9) that demonstrates high genome-wide specificity without compromising on-target activity in human cells. These results offer a more comprehensive model to rationalize and modify the balance between target recognition and nuclease activation for precision genome editing
Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA
Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9
Structure and Dynamics of Cas9 HNH Domain Catalytic State
Abstract The bacterial CRISPR-Cas9 immune system has been harnessed as a powerful and versatile genome-editing tool and holds immense promise for future therapeutic applications. Despite recent advances in understanding Cas9 structures and its functional mechanism, little is known about the catalytic state of the Cas9 HNH nuclease domain, and identifying how the divalent metal ions affect the HNH domain conformational transition remains elusive. A deeper understanding of Cas9 activation and its cleavage mechanism can enable further optimization of Cas9-based genome-editing specificity and efficiency. Using two distinct molecular dynamics simulation techniques, we have obtained a cross-validated catalytically active state of Cas9 HNH domain primed for cutting the target DNA strand. Moreover, herein we demonstrate the essential roles of the catalytic Mg2+ for the active state formation and stability. Importantly, we suggest that the derived catalytic conformation of the HNH domain can be exploited for rational engineering of Cas9 variants with enhanced specificity
