30 research outputs found

    Relaxation processes in hybrid organic-inorganic polymer nanosystems polymerized in situ

    No full text
    International audienceThe relaxation processes of hybrid organic-inorganic polymer nanosystems (OIS) synthesized by joint polymerization of organic and inorganic components were studied using methods of differential scanning calorimetry (DSC), dynamic mechanical thermal analysis (DMTA), and broadband dielectric relaxation spectroscopy (DRS). The organic component was a mixture of two products: high-molecular-weight macrodiisocyanate (MDI) with low reactivity and low-molecular-weight isocyanate-containing modifier poly(isocyanate) (PIC) with high reactivity. Sodium silicate (SS) was used as inorganic component. The structures of the OIS obtained were in the form of hybrids with covalently connected building blocks and interpenetrating networks: weakly cross-linked network MDI/SS and highly cross-linked network PIC/SS. Depending on the MDI/PIC ratio, one of the networks was prevailing and created a continuous structure with domains of second network

    The effects of silica fillers on the gelation and vitrification of highly filled epoxy-amine thermosets

    No full text
    Highly filled thermosets are used in applications such as integrated circuit (IC) packaging. However, a detailed understanding of the effects of the fillers on the macroscopic cure properties is limited by the complex cure of such systems. This work systematically quantifies the effects of filler content on the kinetics, gelation and vitrification of a model silica-filled epoxy/amine system in order to begin to understand the role of the filler in IC packaging cure. At high cure temperatures (100 degreesC and above) there appears to be no effect of fillers on cure kinetics and gelation and vitrification times. However, a decrease in the gelation and vitrification times and increase the reaction rate is seen with increasing filler content at low cure temperatures (60-90 degreesC). An explanation for these results is given in terms of catalysation of the epoxy amine reaction by hydrogen donor species present on the silica surface and interfacial effects

    PTC effect and structure of polymer composites based on polyethylene/polyoxymethylene blend filled with dispersed iron

    No full text
    International audienceThe temperature dependence of resistivity, structure, and thermal expansion of composites based on polyethylene/polyoxymethylene (PE/POM) blends filled with dispersed iron (Fe) have been studied. The dependence of conductivity on filler content shows percolation behavior, with the values of the percolation thresholds equal to 21 vol% for PE-Fe, 24 vol% for POM-Fe, and 9 vol% for the filled blend PE/POM-Fe, with two-step character of the conductivity curve. The evolution of structure of the composite PE/POM-Fe demonstrates transition from polymer matrix POM-Fe, with inclusions of PE through cocontinuous phases of both POM-Fe and PE, to PE matrix, with inclusions of POM-Fe. Such a structure occurs due to localization of the filler only in one of the polymer phases, namely in POM. Measurements of the coefficient of thermal expansion α show the presence of two values of a: higher value (equal to a of PE) and lower value (equal to a of POM-Fe), the transition between them corresponding to the structure with cocontinuous phases. The PE/POM-Fe composites demonstrate double-positive temperature coefficient (PTC) effect, with the presence of two transitions and a plateau between them. In such a system, two contributions to the PTC effect coexist: the first contribution originates from the thermal expansion of the nonconductive PE phase with higher value of the coefficient a, which leads to the break of the continuity of the conductive POM-Fe phase; the second contribution originates from the break of the conductive structure of the filler inside the POM-Fe phase because of the morphological changes in the vicinity of the melting temperature of POM. The double PTC effect is explained in terms of these two processes (thermal expansion and melting)
    corecore