18 research outputs found

    Generation of propagating spin waves from regions of increased dynamic demagnetising field near magnetic antidots

    Get PDF
    Journal article and accompanying data and mediaThe article appeared in Applied Physics Letters 107, 162401 (2015); doi: 10.1063/1.4933263 and may be found at http://dx.doi.org/10.1063/1.4933263We have used Brillouin Light Scattering and micromagnetic simulations to demonstrate a point-like source of spin waves created by the inherently nonuniform internal magnetic field in the vicinity of an isolated antidot formed in a continuous film of yttrium-iron-garnet. The field nonuniformity ensures that only well-defined regions near the antidot respond in resonance to a continuous excitation of the entire sample with a harmonic microwave field. The resonantly excited parts of the sample then served as reconfigurable sources of spin waves propagating (across the considered sample) in the form of caustic beams. Our findings are relevant to further development of magnonic circuits, in which point-like spin wave stimuli could be required, and as a building block for interpretation of spin wave behavior in magnonic crystals formed by antidot arrays.Engineering and Physical Sciences Research Council (EPSRC)Russian Foundation for Basic ResearchRussian Science FoundationScholarship of the President of Russian Federatio

    Field-Controlled Phase-Rectified Magnonic Multiplexer

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.The article plus associated .mif files is in ORE: http://hdl.handle.net/10871/18265The mechanism used to alter the features of propagating spin waves is a key component underpinning the functionality of high-frequency magnonic devices. Here, using experiment and micromagnetic simulations, we demonstrate the feasibility of a magnonic multiplexer in which the spin-wave beam is toggled between device output branches by the polarity of a small global bias magnetic field. Due to the anisotropy inherent in the dispersion of magnetostatic spin waves, the phase fronts of the output spin waves are asymmetrically tilted relative to the direction of the beam propagation (group velocity). We show how the phase tilts could be (partly) rectified in the magnonic waveguides of variable widths.This work was supported in part by the U.K. Engineering and Physical Sciences Research Council under Project EP/L019876/1 and Project EP/P505526/1, in part by the Russian Science Foundation under Project 14–19-00760, in part by the Scholarship of the President of Russian Federation (SP-313.2015.5), and in part by the Russian Foundation under Projects 14-07-00273 and 15-37-51253

    Magnonic beam splitter: The building block of parallel magnonic circuitry

    Get PDF
    We demonstrate a magnonic beam splitter that works by inter-converting magnetostatic surface and backward-volume spin waves propagating in orthogonal sections of a T-shaped yttrium iron garnet structure. The inter-conversion is enabled by the overlap of the surface and volume spin wave bands. This overlap results from the demagnetising field induced along the transversely magnetised section(-s) of the structure and the quantization of the transverse wave number of the propagating spin waves (which are therefore better described as waveguide modes). In agreement with numerical micromagnetic simulations, our Brillouin light scattering imaging experiments reveal that, depending on the frequency, the incident fundamental waveguide magnonic modes may also be converted into higher order waveguide modes. The magnonic beam splitter demonstrated here is an important step towards the development of parallel logic circuitry of magnonics.The research leading to these results has received funding from the Russian Foundation for Basic Research (Project No. 14-07-00273), the Grant from Russian Science Foundation (Project No. 14-19-00760), the Scholarship of the President of Russian Federation (SP-313.2015.5), and from the Engineering and Physical Sciences Research Council of the United Kingdom (Project Nos. EP/L019876/1 and EP/P505526/1)

    Erratum: Towards graded-index magnonics: Steering spin waves in magnonic networks [Phys. Rev. B 92, 020408(R) (2015)]

    Get PDF
    This is the final version of the article. Available from the American Physical Societ via the DOI in this record.This is the erratum to 'Towards graded-index magnonics: Steering spin waves in magnonic networks'. Physical Review B 92, 020408(R), 20 July 2015. DOI: https://doi.org/10.1103/PhysRevB.92.020408The article for which this is the erratum is in ORE: http://hdl.handle.net/10871/26167-The research leading to these results has received funding from the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 247556 (NoWaPhen), from the Engineering and Physical Sciences Research Council of the United Kingdom under Projects No. EP/L019876/1 and No. EP/L020696/1, from Russian Science Foundation (Project No. 14-19-00760), and the Scholarship of the President of Russian Federation (SP-313.2015.5)

    Spin wave propagation in a uniformly biased curved magnonic waveguide

    Get PDF
    This is the final version of the article. Available from American Physical Society via the DOI in this record.Using Brillouin light scattering microscopy and micromagnetic simulations, we study the propagation and transformation of magnetostatic spin waves across uniformly biased curved magnonic waveguides. Our results demonstrate that the spin wave transmission through the bend can be enhanced or weakened by modifying the distribution of the inhomogeneous internal magnetic field spanning the structure. Our results open up the possibility of optimally molding the flow of spin waves across networks of magnonic waveguides, thereby representing a step forward in the design and construction of the more complex magnonic circuitry.Structure fabrication and microwave measurements were supported by a grant from the Russian Science Foundation (Grant No. 16-19-10283). This work was also partially supported by the Russian Foundation for Basic Research (Grant No. 16-37-00217), the Scholarship and Grant of the President of RF (Grant No. SP-313.2015.5, MK-5837.2016.9), and the Engineering and Physical Sciences Research Council of the United Kingdom (Projects No. EP/L019876/1 and No. EP/P505526/1)

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψ′→π+π−J/ψ(J/ψ→γppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ′\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=1861−13+6(stat)−26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Branching fraction measurements of χc0 and χc2 to π0π0 and ηη

    Get PDF
    Using a sample of 1.06×108 ψ ′ decays collected by the BESIII detector, χc0 and χc2 decays into π0π0 and ηη are studied. The branching fraction results are Br(χc0→π 0π0)=(3.23±0.03±0.23±0.14)×10 -3, Br(χc2→π0π0)=(8.8±0.2±0.6±0.4)×10 -4, Br(χc0→ηη)=(3.44±0.10±0. 24±0.2)×10 -3, and Br(χc2→ηη)=(6. 5±0.4±0.5±0.3)×10 -4, where the uncertainties are statistical, systematic due to this measurement, and systematic due to the branching fractions of ψ ′→ γχcJ. The results provide information on the decay mechanism of χc states into pseudoscalars. © 2010 The American Physical Society.published_or_final_versio

    First observation of the decays χcJ→π0π0π0π0

    Get PDF
    We present a study of the P-wave spin-triplet charmonium χ cJ decays (J=0, 1, 2) into π0π0π0π0. The analysis is based on 106×106 ψ⊃′ decays recorded with the BESIII detector at the BEPCII electron positron collider. The decay into the π0π0π0π0 hadronic final state is observed for the first time. We measure the branching fractions B(χ c0→π0π0π0π0)=(3.34±0. 06±0.44)×10⊃-3, B(χ c1→π0π0π0π0) =(0.57±0.03±0.08)×10⊃-3, and B(χ c2→π0π0π0π0)=(1.21±0.05±0.16) ×10⊃-3, where the uncertainties are statistical and systematical, respectively. © 2011 American Physical Society.published_or_final_versio

    Measurement of the matrix element for the decay η′→ηπ +π -

    Get PDF
    The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio

    Study of a00(980)-f0(980) mixing

    Get PDF
    Using samples of 2.25×108 J/ψ events and 1.06×108 ψ ′ events collected with the BES III detector, we study the f 0(980)→a00(980) and a00(980)→f 0(980) transitions in the processes J/ψ→φf 0(980) →φa00(980) and χ c1→π0a00(980)→π0f 0(980), respectively. Evidence for f 0(980)→a00(980) is found with a significance of 3.4σ, while in the case of a00(980)→f 0(980) transition, the significance is 1.9σ. Measurements and upper limits of both branching ratios and mixing intensities are determined. © 2011 American Physical Society.published_or_final_versio
    corecore