802 research outputs found

    Long-term orbital evolution of short-period comets found in Project Cosmo-DICE

    Get PDF
    Orbital evolutions of about 160 short-period (SP) comets are numerically integrated for 4400 years in the framework of a realistic dynamical model. By the round-trip error in closure test, a reliable time space of the integrated orbits is estimated for each comet. Majority of the SP comets with their Tisserand's constant(J) between 2.8 and 3.1 are found to evolve within the past 1000-2000 years from the orbits whose perihelia are near the Jovian orbit to the orbits with perihelia of 1-2 AU. This evolution is much more rapid than that expected from Monte Carlo simulations based on symmetric distribution of planetary perturbations, thus suggesting that asymmetry of perturbation distribution play an important role in cometary evolution. Several comets are shown to evolve from the near-Saturn orbits and then to be handed over under the control of Jupiter. We also find that a few comets were captured from long-period orbits (a = 75-125 AU) via only a few close encounters with Jupiter. It is confirmed that the captured SP comets of low-inclination with 2.7 less than J less than 3.1 show more or less strong chaotic behavior. On the other hand, comets with longer orbital period and/or of high inclination reveal slow or quasi-periodic orbital evolution

    Chiral Polyurea with L-Lysinyl Residue Aimed for Optical Resolution

    Get PDF
    Novel polyurea was synthesized from lysinyl residue, L-lysine-4-nitroanilide Novel polyurea was synthesized from lysinyl residue, L-lysine-4-nitroanilide (L-Lys-4-NA) and 1,4-phenylene diisocyanate (1,4-PDI). The polyurea thus prepared gave durable self-standing membranes. The polyurea was converted into molecular recognition materials by using Z-D-Glu or Z-L-Glu as a print molecule. The Z-D-Glu molecularly imprinted membrane adsorbed the D-isomer of Glu in preference to the corresponding L-isomer and vice versa. Even though the polyurea consisted of L-lysinyl residue, both Z-D-Glu and Z-L-Glu worked as print molecules to construct molecular (chiral) recognition sites in the membrane. Those two types of molecularly imprinted membrane show chiral separation abilities, adopting a concentration gradient or an applied potential difference as a driving force for membrane transport

    Beyond Narrative Description: Generating Poetry from Images by Multi-Adversarial Training

    Full text link
    Automatic generation of natural language from images has attracted extensive attention. In this paper, we take one step further to investigate generation of poetic language (with multiple lines) to an image for automatic poetry creation. This task involves multiple challenges, including discovering poetic clues from the image (e.g., hope from green), and generating poems to satisfy both relevance to the image and poeticness in language level. To solve the above challenges, we formulate the task of poem generation into two correlated sub-tasks by multi-adversarial training via policy gradient, through which the cross-modal relevance and poetic language style can be ensured. To extract poetic clues from images, we propose to learn a deep coupled visual-poetic embedding, in which the poetic representation from objects, sentiments and scenes in an image can be jointly learned. Two discriminative networks are further introduced to guide the poem generation, including a multi-modal discriminator and a poem-style discriminator. To facilitate the research, we have released two poem datasets by human annotators with two distinct properties: 1) the first human annotated image-to-poem pair dataset (with 8,292 pairs in total), and 2) to-date the largest public English poem corpus dataset (with 92,265 different poems in total). Extensive experiments are conducted with 8K images, among which 1.5K image are randomly picked for evaluation. Both objective and subjective evaluations show the superior performances against the state-of-the-art methods for poem generation from images. Turing test carried out with over 500 human subjects, among which 30 evaluators are poetry experts, demonstrates the effectiveness of our approach

    Submillimeter detection of the Sunyaev -- Zel'dovich effect toward the most luminous X-ray cluster at z=0.45

    Full text link
    We report on the detection of the Sunyaev -- Zel'dovich (SZ) signals toward the most luminous X-ray cluster RXJ1347-1145 at Nobeyama Radio Observatory (21 and 43 GHz) and at James Clerk Maxwell Telescope (350 GHz). In particular the latter is the first successful detection of the SZ temperature increment in the submillimeter band which resolved the profile of a cluster of galaxies. Both the observed spectral dependence and the radial profile of the SZ signals are fully consistent with those expected from the X-ray observation of the cluster. The combined analysis of 21GHz and 350GHz data reproduces the temperature and core-radius of the cluster determined with the ROSAT and ASCA satellites when we adopt the slope of the density profile from the X-ray observations. Therefore our present data provide the strongest and most convincing case for the detection of the submillimeter SZ signal from the cluster, as well as in the Rayleigh -- Jeans regime. We also discuss briefly the cosmological implications of the present results.Comment: 11 pages, The Astrophysical Journal (Letters), in pres

    Reducing nonideal to ideal coupling in random matrix description of chaotic scattering: Application to the time-delay problem

    Full text link
    We write explicitly a transformation of the scattering phases reducing the problem of quantum chaotic scattering for systems with M statistically equivalent channels at nonideal coupling to that for ideal coupling. Unfolding the phases by their local density leads to universality of their local fluctuations for large M. A relation between the partial time delays and diagonal matrix elements of the Wigner-Smith matrix is revealed for ideal coupling. This helped us in deriving the joint probability distribution of partial time delays and the distribution of the Wigner time delay.Comment: 4 pages, revtex, no figures; published versio

    AC resistivity of d-wave ceramic superconductors

    Full text link
    We model d-wave ceramic superconductors with a three-dimensional lattice of randomly distributed π\pi Josephson junctions with finite self-inductance. The linear and nonlinear ac resistivity of the d-wave ceramic superconductors is obtained as function of temperature by solving the corresponding Langevin dynamical equations. We find that the linear ac resistivity remains finite at the temperature TpT_p where the third harmonics of resistivity has a peak. The current amplitude dependence of the nonlinear resistivity at the peak position is found to be a power law. These results agree qualitatively with experiments. We also show that the peak of the nonlinear resistivity is related to the onset of the paramagnetic Meissner effect which occurs at the crossover temperature TpT_p, which is above the chiral glass transition temperature TcgT_{cg}.Comment: 7 eps figures, Phys. Rev. B (in press
    corecore