550 research outputs found

    A facile chemical conversion synthesis of Sb2S3 nanotubes and the visible light-driven photocatalytic activities

    Get PDF
    We report a simple chemical conversion and cation exchange technique to realize the synthesis of Sb2S3 nanotubes at a low temperature of 90°C. The successful chemical conversion from ZnS nanotubes to Sb2S3 ones benefits from the large difference in solubility between ZnS and Sb2S3. The as-grown Sb2S3 nanotubes have been transformed from a weak crystallization to a polycrystalline structure via successive annealing. In addition to the detailed structural, morphological, and optical investigation of the yielded Sb2S3 nanotubes before and after annealing, we have shown high photocatalytic activities of Sb2S3 nanotubes for methyl orange degradation under visible light irradiation. This approach offers an effective control of the composition and structure of Sb2S3 nanomaterials, facilitates the production at a relatively low reaction temperature without the need of organics, templates, or crystal seeds, and can be extended to the synthesis of hollow structures with various compositions and shapes for unique properties

    Confined conversion of CuS nanowires to CuO nanotubes by annealing-induced diffusion in nanochannels

    Get PDF
    Copper oxide (CuO) nanotubes were successfully converted from CuS nanowires embedded in anodic aluminum oxide (AAO) template by annealing-induced diffusion in a confined tube-type space. The spreading of CuO and formation of CuO layer on the nanochannel surface of AAO, and the confinement offered by AAO nanochannels play a key role in the formation of CuO nanotubes

    Recent changes of water discharge and sediment load in the Yellow River basin, China

    Get PDF
    The Yellow River basin contributes approximately 6% of the sediment load from all river systems globally, and the annual runoff directly supports 12% of the Chinese population. As a result, describing and understanding recent variations of water discharge and sediment load under global change scenarios are of considerable importance. The present study considers the annual hydrologic series of the water discharge and sediment load of the Yellow River basin obtained from 15 gauging stations (10 mainstream, 5 tributaries). The Mann-Kendall test method was adopted to detect both gradual and abrupt change of hydrological series since the 1950s. With the exception of the area draining to the Upper Tangnaihai station, results indicate that both water discharge and sediment load have decreased significantly (p<0.05). The declining trend is greater with distance downstream, and drainage area has a significant positive effect on the rate of decline. It is suggested that the abrupt change of the water discharge from the late 1980s to the early 1990s arose from human extraction, and that the abrupt change in sediment load was linked to disturbance from reservoir construction.Geography, PhysicalGeosciences, MultidisciplinarySCI(E)43ARTICLE4541-5613

    Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Titanium dioxide (TiO<sub>2</sub>) nanomaterials have considerable beneficial uses as photocatalysts and solar cells. It has been established for many years that pigment-grade TiO<sub>2 </sub>(200 nm sphere) is relatively inert when internalized into a biological model system (in vivo or in vitro). For this reason, TiO<sub>2 </sub>nanomaterials are considered an attractive alternative in applications where biological exposures will occur. Unfortunately, metal oxides on the nanoscale (one dimension < 100 nm) may or may not exhibit the same toxic potential as the original material. A further complicating issue is the effect of modifying or engineering of the nanomaterial to be structurally and geometrically different from the original material.</p> <p>Results</p> <p>TiO<sub>2 </sub>nanospheres, short (< 5 μm) and long (> 15 μm) nanobelts were synthesized, characterized and tested for biological activity using primary murine alveolar macrophages and in vivo in mice. This study demonstrates that alteration of anatase TiO<sub>2 </sub>nanomaterial into a fibre structure of greater than 15 μm creates a highly toxic particle and initiates an inflammatory response by alveolar macrophages. These fibre-shaped nanomaterials induced inflammasome activation and release of inflammatory cytokines through a cathepsin B-mediated mechanism. Consequently, long TiO<sub>2 </sub>nanobelts interact with lung macrophages in a manner very similar to asbestos or silica.</p> <p>Conclusions</p> <p>These observations suggest that any modification of a nanomaterial, resulting in a wire, fibre, belt or tube, be tested for pathogenic potential. As this study demonstrates, toxicity and pathogenic potential change dramatically as the shape of the material is altered into one that a phagocytic cell has difficulty processing, resulting in lysosomal disruption.</p

    Selective Synthesis of Fe2O3 and Fe3O4 Nanowires Via a Single Precursor: A General Method for Metal Oxide Nanowires

    Get PDF
    Hematite (α-Fe2O3) and magnetite (Fe3O4) nanowires with the diameter of about 100 nm and the length of tens of micrometers have been selectively synthesized by a microemulsion-based method in combination of the calcinations under different atmosphere. The effects of the precursors, annealing temperature, and atmosphere on the morphology and the structure of the products have been investigated. Moreover, Co3O4 nanowires have been fabricated to confirm the versatility of the method for metal oxide nanowires

    Hepatic wound repair

    Get PDF
    BACKGROUND: Human chronic liver diseases (CLDs) with different aetiologies rely on chronic activation of wound healing that represents the driving force for fibrogenesis progression (throughout defined patterns of fibrosis) to the end stage of cirrhosis and liver failure. ISSUES: Fibrogenesis progression has a major worldwide clinical impact due to the high number of patients affected by CLDs, increasing mortality rate, incidence of hepatocellular carcinoma and shortage of organ donors for liver transplantation. BASIC SCIENCE ADVANCES: Liver fibrogenesis is sustained by a heterogeneous population of profibrogenic hepatic myofibroblasts (MFs), the majority being positive for alpha smooth muscle actin (alphaSMA), that may originate from hepatic stellate cells and portal fibroblasts following a process of activation or from bone marrow-derived cells recruited to damaged liver and, in a method still disputed, by a process of epithelial to mesenchymal transition (EMT) involving cholangiocytes and hepatocytes. Recent experimental and clinical data have identified, at tissue, cellular and molecular level major profibrogenic mechanisms: (a) chronic activation of the wound-healing reaction, (b) oxidative stress and related reactive intermediates, and (c) derangement of epithelial-mesenchymal interactions. CLINICAL CARE RELEVANCE: Liver fibrosis may regress following specific therapeutic interventions able to downstage or, at least, stabilise fibrosis. In cirrhotic patients, this would lead to a reduction of portal hypertension and of the consequent clinical complications and to an overall improvement of liver function, thus extending the complication-free patient survival time and reducing the need for liver transplantation. CONCLUSION: Emerging mechanisms and concepts related to liver fibrogenesis may significantly contribute to clinical management of patients affected by CLDs

    Fabrication of Porous TiO2 Hollow Spheres and Their Application in Gas Sensing

    Get PDF
    In this work, porous TiO2 hollow spheres with an average diameter of 100 nm and shell thickness of 20 nm were synthesized by a facile hydrothermal method with NH4HCO3 as the structure-directing agent, and the formation mechanism for this porous hollow structure was proved to be the Ostwald ripening process by tracking the morphology of the products at different reaction stages. The product was characterized by SEM, TEM, XRD and BET analyses, and the results show that the as-synthesized products are anatase phase with a high surface area up to 132.5 m2/g. Gas-sensing investigation reveals that the product possesses sensitive response to methanal gas at 200°C due to its high surface area

    Single Crystalline Cadmium Sulfide Nanowires with Branched Structure

    Get PDF
    In this article, we report the synthesis of branched single crystal CdS nanowires. This branched CdS nanostructure is prepared by a simple surfactant-directing method, which is of particular interest as it uses readily available reagents and provides a convenient route to high-yield single crystal nanowires but with branched shape. These branched nanowires have an average diameter of about 40 nm and length up to several micrometers. A possible mechanism has been proposed and the addition of surfactant dodecylthiol into the two mixed-solvents would play an importance effect on the structure of the product. Based on the mechanism, by controlling the synthesis conditions, such as the ratios between the surfactant, inorganic solvent, and organic solvent, other kinds of nanostructures based on CdS nanowires were also prepared. Photoluminescence (PL) measurement reveals that the branched CdS nanowires have a strong emission at about 700 nm which might be due to its special structure
    corecore