59 research outputs found

    Integrating Computational Biology and Forward Genetics in Drosophila

    Get PDF
    Genetic screens are powerful methods for the discovery of gene–phenotype associations. However, a systems biology approach to genetics must leverage the massive amount of “omics” data to enhance the power and speed of functional gene discovery in vivo. Thus far, few computational methods for gene function prediction have been rigorously tested for their performance on a genome-wide scale in vivo. In this work, we demonstrate that integrating genome-wide computational gene prioritization with large-scale genetic screening is a powerful tool for functional gene discovery. To discover genes involved in neural development in Drosophila, we extend our strategy for the prioritization of human candidate disease genes to functional prioritization in Drosophila. We then integrate this prioritization strategy with a large-scale genetic screen for interactors of the proneural transcription factor Atonal using genomic deficiencies and mutant and RNAi collections. Using the prioritized genes validated in our genetic screen, we describe a novel genetic interaction network for Atonal. Lastly, we prioritize the whole Drosophila genome and identify candidate gene associations for ten receptor-signaling pathways. This novel database of prioritized pathway candidates, as well as a web application for functional prioritization in Drosophila, called Endeavour-HighFly, and the Atonal network, are publicly available resources. A systems genetics approach that combines the power of computational predictions with in vivo genetic screens strongly enhances the process of gene function and gene–gene association discovery

    Improved Siderotic Nodule Detection in Cirrhosis with Susceptibility-Weighted Magnetic Resonance Imaging: A Prospective Study

    Get PDF
    BACKGROUND: Hepatic cirrhosis is a common pathway of progressive liver destruction from multiple causes. Iron uptake can occur within the hepatic parenchyma or within the various nodules that form in a cirrhotic liver, termed siderotic nodules. Siderotic nodule formation has been shown to correlate with inflammatory activity, and while the relationship between siderotic nodule formation and malignancy remains unclear, iron distribution within hepatic nodules has known implications for the detection of hepatocellular carcinoma. We aimed to evaluate the role of abdominal susceptibility-weighted imaging in the detection of siderotic nodules in cirrhotic patients. METHODOLOGY/PRINCIPAL FINDINGS: Forty-six (46) cirrhotic patients with at least one siderotic nodule detected on previous imaging underwent both computed tomography and magnetic resonance imaging (T1-, T2-, T2*-, and susceptibility-weighted imaging) at 3.0 Tesla. Imaging data was independently analyzed by two radiologists. Siderotic nodule count was determined for each modality and imaging sequence. For each magnetic resonance imaging technique, siderotic nodule conspicuity was assessed on a 3 point scale (1 = weak, 2 = moderate, 3 = strong). More nodules were detected by susceptibility weighted imaging (n = 2935) than any other technique, and significantly more than by T2* weighted imaging (n = 1696, p<0.0001). Lesion conspicuity was also highest with susceptibility-weighted imaging, with all nodules found to be moderate (n = 6) or strong (n = 40); a statistically significant difference (p<0.001). CONCLUSIONS: Susceptibility-weighted imaging had the greatest lesion conspicuity and detected the highest number of siderotic nodules suggesting it is the most sensitive imaging technique to detect siderotic nodules in cirrhotic patients

    The cellular source for APOBEC3G's incorporation into HIV-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human APOBEC3G (hA3G) has been identified as a cellular inhibitor of HIV-1 infectivity. Viral incorporation of hA3G is an essential step for its antiviral activity. Although the mechanism underlying hA3G virion encapsidation has been investigated extensively, the cellular source of viral hA3G remains unclear.</p> <p>Results</p> <p>Previous studies have shown that hA3G forms low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of the mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation.</p> <p>Conclusions</p> <p>Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G.</p

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Experimental and theoretical studies on imidazolium ionic liquid-promoted conversion of fructose to 5-hydroxymethylfurfural

    No full text
    A combined experimental and computational study on the imidazolium ionic liquid-promoted conversion of fructose to 5-hydroxymethylfurfural (HMF) was performed. In particular, 1-butyl-3-methylimidazolium bromide (BMImBr) was found to be unexpectedly effective for conversion of fructose into HMF without utilizing any other additive or catalyst. Under the optimized conditions, nearly 100% conversion of fructose with a 95% yield of HMF could be obtained. In addition, BMImBr could be easily recovered and reused over 6 times without significant loss of activity. This protocol represents a simple, recyclable and environmentally friendly pathway for HMF production. Furthermore, the detailed mechanism of the BMImBr-promoted conversion of fructose into HMF was also studied through an in situ FT-IR technique, NMR and density functional theory calculations, and demonstrated that the hydrogen bond interaction between BMImBr and fructose could play an important role in promoting the dehydration of fructose. This work also provides further understanding at the molecular level of the reaction process for ionic liquid-promoted conversion of fructose to HMF
    corecore