1,534 research outputs found

    A Framework for Teacher Verbal Feedback: Lessons from Chinese Mathematics Classrooms

    Get PDF
    published_or_final_versio

    An approach to achieve message efficient early-stopping uniform consensus protocols

    Get PDF
    2003-2004 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    A Review: Cytochrome P450 in Alcoholic and Non-Alcoholic Fatty Liver Disease

    Get PDF
    Yu-Jie Jiang,1,2 Ye-Ming Cao,1 Yong-Bing Cao,1 Tian-Hua Yan,2 Cheng-Lin Jia,1 Ping He1 1Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China; 2Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of ChinaCorrespondence: Cheng-Lin Jia; Ping He, Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China, Tel/Fax +1 522 136 9352 ; +1 301 693 1191, Email [email protected]; [email protected]: Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.Keywords: CYP450, liver metabolism, lipid accumulation, monooxygenases, alcoholic fatty liver disease, non-alcoholic fatty liver diseas

    Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China

    Get PDF
    2009-2010 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    New Hepatitis E Virus Genotype in Bactrian Camels, Xinjiang, China, 2013

    Get PDF
    published_or_final_versio

    Entanglement of single-photons and chiral phonons in atomically thin WSe2_2

    Full text link
    Quantum entanglement is a fundamental phenomenon which, on the one hand, reveals deep connections between quantum mechanics, gravity and the space-time; on the other hand, has practical applications as a key resource in quantum information processing. While it is routinely achieved in photon-atom ensembles, entanglement involving the solid-state or macroscopic objects remains challenging albeit promising for both fundamental physics and technological applications. Here, we report entanglement between collective, chiral vibrations in two-dimensional (2D) WSe2_2 host --- chiral phonons (CPs) --- and single-photons emitted from quantum dots (QDs) present in it. CPs which carry angular momentum were recently observed in WSe2_2 and are a distinguishing feature of the underlying honeycomb lattice. The entanglement results from a "which-way" scattering process, involving an optical excitation in a QD and doubly-degenerate CPs, which takes place via two indistinguishable paths. Our unveiling of entanglement involving a macroscopic, collective excitation together with strong interaction between CPs and QDs in 2D materials opens up ways for phonon-driven entanglement of QDs and engineering chiral or non-reciprocal interactions at the single-photon level

    Shining Emitter in a Stable Host: Design of Halide Perovskite Scintillators for X-ray Imaging from Commercial Concept

    Get PDF
    Halide perovskite (HP) nanocrystals (NCs) have recently shown great potential for X-ray detection and imaging. However, the practical application still has a long way to go with many technical requirements waiting to be fulfilled, including structure optimization, stability enhancement, and cost reduction. A design principle in this beginning stage is urgently needed but still lacking. Herein, with an “emitter-in-matrix” principle refined from commercial scintillators, CsPbBr3@Cs4PbBr6 with emissive CsPbBr3 NCs embedded inside a solid-state Cs4PbBr6 host is subjected to X-ray sensing and imaging. The Cs4PbBr6 matrix not only enhances the attenuation of X-rays but also dramatically improves the stability of CsPbBr3 NCs. A favorable optical design with the Cs4PbBr6 matrix being transparent to the emission from CsPbBr3 NCs enables efficient light output. As a result, stable and sensitive scintillation response to X-ray signals is demonstrated with superior linearity and ultrahigh time resolution. In order to show the huge potential for practical applications, X-ray imaging using a large-area film (360 mm × 240 mm) by the blade-coating technique is carried out to obtain a high-quality image of interior structures invisible to the human eye. In addition to the above advantages in optics, CsPbBr3@Cs4PbBr6 also enjoys facile solution synthesis with large scalability, excellent repeatability, and low cost

    Wide Range Applications of Spirulina: From Earth to Space Missions

    Get PDF
    Spirulina is the most studied cyanobacterium species for both pharmacological applications and the food industry. The aim of the present review is to summarize the potential benefits of the use of Spirulina for improving healthcare both in space and on Earth. Regarding the first field of application, Spirulina could represent a new technology for the sustainment of long-duration manned missions to planets beyond the Lower Earth Orbit (e.g., Mars); furthermore, it could help astronauts stay healthy while exposed to a variety of stress factors that can have negative consequences even after years. As far as the second field of application, Spirulina could have an active role in various aspects of medicine, such as metabolism, oncology, ophthalmology, central and peripheral nervous systems, and nephrology. The recent findings of the capacity of Spirulina to improve stem cells mobility and to increase immune response have opened new intriguing scenarios in oncological and infectious diseases, respectively

    The incidence of liver injury in Uyghur patients treated for TB in Xinjiang Uyghur autonomous region, China, and its association with hepatic enzyme polymorphisms nat2, cyp2e1, gstm1 and gstt1.

    Get PDF
    BACKGROUND AND OBJECTIVE: Of three first-line anti-tuberculosis (anti-TB) drugs, isoniazid is most commonly associated with hepatotoxicity. Differences in INH-induced toxicity have been attributed to genetic variability at several loci, NAT2, CYP2E1, GSTM1and GSTT1, that code for drug-metabolizing enzymes. This study evaluated whether the polymorphisms in these enzymes were associated with an increased risk of anti-TB drug-induced hepatitis in patients and could potentially be used to identify patients at risk of liver injury. METHODS AND DESIGN: In a cross-sectional study, 2244 tuberculosis patients were assessed two months after the start of treatment. Anti-TB drug-induced liver injury (ATLI) was defined as an ALT, AST or bilirubin value more than twice the upper limit of normal. NAT2, CYP2E1, GSTM1 and GSTT1 genotypes were determined using the PCR/ligase detection reaction assays. RESULTS: 2244 patients were evaluated, there were 89 cases of ATLI, a prevalence of 4% 9 patients (0.4%) had ALT levels more than 5 times the upper limit of normal. The prevalence of ATLI was greater among men than women, and there was a weak association with NAT2*5 genotypes, with ATLI more common among patients with the NAT2*5*CT genotype. The sensitivity of the CT genotype for identifying patients with ATLI was 42% and the positive predictive value 5.9%. CT ATLI was more common among slow acetylators (prevalence ratio 2.0 (95% CI 0.95,4.20) )compared to rapid acetylators. There was no evidence that ATLI was associated with CYP2E1 RsaIc1/c1genotype, CYP2E1 RsaIc1/c2 or c2/c2 genotypes, or GSTM1/GSTT1 null genotypes. CONCLUSIONS: In Xinjiang Uyghur TB patients, liver injury was associated with the genetic variant NAT2*5, however the genetic markers studied are unlikely to be useful for screening patients due to the low sensitivity and low positive predictive values for identifying persons at risk of liver injury

    General Analysis of Antideuteron Searches for Dark Matter

    Full text link
    Low energy cosmic ray antideuterons provide a unique low background channel for indirect detection of dark matter. We compute the cosmic ray flux of antideuterons from hadronic annihilations of dark matter for various Standard Model final states and determine the mass reach of two future experiments (AMS-02 and GAPS) designed to greatly increase the sensitivity of antideuteron detection over current bounds. We consider generic models of scalar, fermion, and massive vector bosons as thermal dark matter, describe their basic features relevant to direct and indirect detection, and discuss the implications of direct detection bounds on models of dark matter as a thermal relic. We also consider specific dark matter candidates and assess their potential for detection via antideuterons from their hadronic annihilation channels. Since the dark matter mass reach of the GAPS experiment can be well above 100 GeV, we find that antideuterons can be a good indirect detection channel for a variety of thermal relic electroweak scale dark matter candidates, even when the rate for direct detection is highly suppressed.Comment: 44 pages, 15 Figure
    corecore