58 research outputs found

    The Rice HGW Gene Encodes a Ubiquitin-Associated (UBA) Domain Protein That Regulates Heading Date and Grain Weight

    Get PDF
    Heading date and grain weight are two determining agronomic traits of crop yield. To date, molecular factors controlling both heading date and grain weight have not been identified. Here we report the isolation of a hemizygous mutation, heading and grain weight (hgw), which delays heading and reduces grain weight in rice. Analysis of hgw mutant phenotypes indicate that the hemizygous hgw mutation decreases latitudinal cell number in the lemma and palea, both composing the spikelet hull that is known to determine the size and shape of brown grain. Molecular cloning and characterization of the HGW gene showed that it encodes a novel plant-specific ubiquitin-associated (UBA) domain protein localized in the cytoplasm and nucleus, and functions as a key upstream regulator to promote expressions of heading date- and grain weight-related genes. Moreover, co-expression analysis in rice and Arabidopsis indicated that HGW and its Arabidopsis homolog are co-expressed with genes encoding various components of ubiquitination machinery, implying a fundamental role for the ubiquitination pathway in heading date and grain weight control

    Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity

    Get PDF
    Loss of 4E-BP1 expression has been linked to cancer progression and resistance to mTOR inhibitors, but the mechanism underlying 4E-BP1 downregulation in tumors remains unclear. Here we identify Snail as a strong transcriptional repressor of 4E-BP1. We find that 4E-BP1 expression inversely correlates with Snail level in cancer cell lines and clinical specimens. Snail binds to three E-boxes present in the human 4E-BP1 promoter to repress transcription of 4E-BP1. Ectopic expression of Snail in cancer cell lines lacking Snail profoundly represses 4E-BP1 expression, promotes cap-dependent translation in polysomes, and reduces the anti-proliferative effect of mTOR kinase inhibitors. Conversely, genetic and pharmacological inhibition of Snail function restores 4E-BP1 expression and sensitizes cancer cells to mTOR kinase inhibitors by enhancing 4E-BP1-mediated translation-repressive effect on cell proliferation and tumor growth. Our study reveals a critical Snail-4E-BP1 signaling axis in tumorigenesis, and provides a rationale for targeting Snail to improve mTOR-targeted therapies

    Pseudo-Random Bit Generator Based on Couple Chaotic Systems and its Application in Stream-Ciphers Cryptography

    Get PDF
    Chaotic cryptology is widely investigated recently. This paper reviews the progress in this area and points out some existent problems in digital chaotic ciphers. As a comprehensive solution to these problems, a novel pseudo-random bit generator based on a couple of chaotic systems called CCS-PRBG is presented. Detailed theoretical analyses show that it has perfect cryptographic properties, and can be used to construct stream ciphers with higher security than other chaotic ciphers. Some experiments are made for confirmation. Finally, several examples of stream ciphers based on digital CCS-PRBG are given, and their security is discussed

    Improving security of a chaotic encryption approach

    No full text
    E. Alvarez et al. presented a new chaotic encryption approach recently. But soon G. Alvarez et al. broke it with four cryptanalytic methods and found some other weaknesses. In this Letter we point out why the original scheme is so vulnerable to the proposed four attacks. The chief reasons are two essential defects existing in the original scheme. Based on such a fact, we present an improved encryption scheme to obtain higher security. The cryptographic properties of the improved scheme are studied theoretically and experimentally in detail

    On the security of a chaotic encryption scheme: Problems with computerized chaos in finite computing precision

    No full text
    Zhou et al. have proposed a chaotic encryption scheme, which is based on a kind of computerized piecewise linear chaotic map (PWLCM) realized in finite computing precision. In this paper, we point out that Zhou's encryption scheme is not secure enough from strict cryptographic viewpoint. The reason lies in the dynamical degradation of the computerized piecewise linear chaotic map employed by Zhou et al. The dynamical degradation of the computerized chaos induces many weak keys to cause large information leaking of the plaintext. In addition, we also discuss three simple countermeasures to enhance the security of Zhou's cryptosystem, but none of them can essentially enhance the security
    corecore