984 research outputs found

    USE JD-R THEORY TO EXPLORE THE RELATIONSHIP BETWEEN EMPLOYEE EXPERIENCE AND EMPLOYEE ENGAGEMENT—TAKING JOB DEMANDS AS THE MODERATING VARIABLE

    Get PDF
    Past research has proven that employee experience has a positive impact on employee engagement. Based on the conceptual framework of Job Demands-Resources model (JD-R) model, this study regards efficient employee experience as a job resource to explore the impact of "employee experience" and” job demands” on employee engagement in organizations. Work requirements are further divided into challenge demand and hindrance demand. This study adopts the experimental design of the scenario method and uses two two-factor independent sample designs, namely 2x2(employee experience is high / employee experience is low x challenging job demands is high / challenging job demands is low) and 2x2(employee experience is high / employee experience is low x hindering job demands is high / hindering job demands is low).A total of 176 valid questionnaires were collected. The research results found that when employee experience is high, employee engagement is higher than when employee experience is low. Employee experience and job demands have an interactive effect on employee engagement. When employee experience is high, employee engagement will be higher when challenging job demands are added than when hindering job demands are added. It is expected that the results of this study can help in theoretical and practical application

    Graphene Functionalization of Polyrotaxane-Encapsulated PEG-Based PCMs: Fabrication and Applications.

    Get PDF
    Phase change materials (PCMs) have received much attention regarding the thermal regulation of electronic devices. However, the main limitations of using organic PCMs are the low thermal conductivity and leakage during the phase change process. This work aims to improve these limitations to increase the thermal conductivity of the leakage-proof PCM formed by a polyrotaxane that serves as a support material to encapsulate PEG. For this purpose, different contents of graphene nanoplatelets (GNP) are blended. To facilitate its postindustrial production and to meet ecological standards, the synthesis of this PCM is simple and only using water as a solvent. The PCMs can be thermally processed conveniently by a hot press. Furthermore, the PCMs achieve high enthalpy values (132.9–142.9 J g−1) due to the action of GNPs as thermally conductive fillers. The PCMs exhibited an increase of 60–257% in thermal conductivity values with higher GNP content, and show great shape stability and no leakage during phase change. These improvements solve the main problems of organic PCMs, thus making PLR-PEG-GNP-based materials a good candidate for use as thermal energy storage materials in industrial applications as thermoregulators of solid-state disks or realizing the “shaving peaks and filling valleys” effect for thermoelectric generators.pre-print1654 K

    Sodium alginate and Chitosan aided design of form-stable Polyrotaxane based phase change materials with ultra-high latent heat.

    Get PDF
    We prepared a series of highly porous Polyrotaxane/sodium alginate, and Polyrotaxane/Chitosan foam alloys according to a sustainable pathway by using water as the only solvent. The foam alloys were further used as supporter materials for poly (ethylene glycol) (PEG) encapsulation, to fabricate shape-stable bio-based phase change materials (PCMs). The pore morphology and the internal interface between PEG and foam alloys were characterized by scanning electron microscope (SEM). Due to the good compatibility between foam alloys and PEG, the PCM performed perfect anti-leakage properties. The introduction of sodium alginate or Chitosan ensures the shape stability of the PCMs during the phase transition. The PCMs performed good cycle stability and showed ultra-high latent heat (171.6 J g−1–189.5 J g−1). Finally, we compared the typical indicators of this work with those reported in the literature, and the comparison highlighted that the present PCMs have the significant advantages: high melting enthalpy, convenient preparation and outstanding sustainability. Notably, the work provided a sustainable idea for the design of anti-leakage and shape-stable PEG-based PCMs.pre-print1327 K

    Bio-based poly (glycerol-itaconic acid)/PEG/APP as form stable and flame-retardant phase change materials

    Get PDF
    With the improvement of people's living level, smart home and comfortable life put forward novel and highly scientific requirements for building materials and home environment. Environmental protection, renewability, processing convenience and use safety (non-toxic/fire safety) are all core indicators that need to be considered in an all-round way in the process of material design. In this work, we used a simple and efficient green process by blending ammonium polyphosphate (APP) and poly (glycerol-itaconic acid) loaded polyethylene glycol (PEG) to prepare fire safe phase change materials (PCMs). The flame retardancy, phase change performance and thermal response behavior (including form stability, thermal conductivity, cycle stability, and latent heat etc.) were systematically characterized. The results showed that limiting oxygen index (LOI) increased significantly with the increase of APP content. Typically, when the filling amount of APP reached 15 wt%, the LOI value increased from 21.6% to 28.7%, vertical testing reached UL-94 V0 rating and the pHRR decreased by 36.15%. The as-prepared PCMs show excellent form stability, and the enthalpy of phase change keeps higher than 70 J g−1, which is at the high level as that of same kinds of PCMs. Notably, due to its high preparation efficiency for PCM fabrication and the profiles of all bio-based supporting matrix, solvent-free pathway, mild curing temperature, and fire safety, it is expected to be effectively applied in building for the thermal regulation.pre-print1269 K

    Simulation of ground source heat pump (GSHP) system at One New Change retail center, London

    Get PDF

    PLA aerogel as a universal support for the typical organic phase change energy storage materials.

    Get PDF
    We first prepared Polylactic acid (PLA) aerogels with high porosity based on a facile and efficient thermal induced phase separation technique. In view of the excellent internal nano structure of PLA aerogel, high porosity and suitable interfacial affinity, it was selected as a support material to encapsulate four common organic phase change materials (PCMs), thereby preparing anti-leakage, shape-stable and sustainable PCMs with ultra-high latent heat (178.9–224.9 J g−1). PLA aerogel encapsulated PCMs perform high enthalpy efficiency (>92 %), which may benefit from the highly internal compatible nanostructure of PLA. Thermally conductive fillers (Boron nitride and Graphene nanoplatelet) were introduced to improve thermal conductivity. An important factor of PLA aerogel as a universal encapsulation matrix is analyzed based on the solubility parameters and Flory-Huggins parameters. The application cases of smart container and thermal regulation in confined spaces further prove the practical application value in the thermal regulation and energy saving area.pre-print2189 K

    ï»żDescription of three new species of Callyntrura (Japonphysa) (Collembola, Entomobryidae) from China with the aid of DNA barcoding

    Get PDF
    Callyntrura(s.l.) Börner, 1906 is the largest genus of the subfamily Salininae and contains 11 subgenera and 98 species from all over the world (mainly Asia), with eight species recorded from China. In the present paper, three new species of Callyntrura(s.l.) are described from China: C. (Japonphysa) xinjianensis sp. nov.; C. (J.) tongguensis sp. nov. and C. (J.) raoi sp. nov. Their differences in colour pattern, chaetotaxy and other characters are slight, however distances of COI mtDNA support their validation as three new distinct species. A key to the Chinese Callyntrura(s.l.) is provided

    Age Effects on Spatiotemporal Dynamics of Response Inhibition: An MEG Study

    Get PDF
    Inhibition, the ability to suppress irrelevant information, thoughts or movements, is crucial for humans to perform context-appropriate behaviors. It was suggested that declined cognitive performance in older adults might be attributed to inhibitory deficiencies. Although previous studies have shown an age-associated reduction in inhibitory ability, the understanding regarding its cortical spatiotemporal maps remained limited. Thus, we used a whole-head magnetoencephalography (MEG) to elucidate the age effects on response inhibition, and to explore the brain activation differences in high- and low-performing seniors. We recruited 22 younger and 22 older adults to participate in the visual Go/No-go task. Both behavioral performance and neuromagnetic responses to No-go stimuli were analyzed. The behavioral results showed that the older adults made more false alarm (FA) errors than the younger adults did. The MEG results showed that the seniors exhibited declined cortical activities in middle temporal gyrus (MTG) and delayed activation in MTG, prefrontal cortex (PFC) and pre-supplementary motor area (pre-SMA). Furthermore, among the older adults, more recruitment of the left PFC was found in the high-performers than in the lower-performers. In conclusion, age-related deficiencies in response inhibition were observed in both behavioral performance and neurophysiological measurement. Our results also suggested that frontal recruitment plays a compensatory role in successful inhibition
    • 

    corecore