1,996 research outputs found
Spin-valve effect in a carbon atomic wire
We report a theoretical investigation of the spin-valve effect in an atomic scale system, a carbon chain, generated by the presence of a magnetic field in the device leads. We found that there exists a cutoff energy beyond which the conductance of the device vanishes. This cutoff energy can be critically controlled by the relative orientation of the magnetic fields applied to the leads, so that an atomic scale spin valve can be achieved that switches off electric current when magnetic fields of left and right leads are anti-parallel. The physical origin of this transport behavior is found to be related to the wave-function overlap between the leads and the device scattering region.published_or_final_versio
[FeIII(TF4DMAP)OTf] catalysed anti-Markovnikov oxidation of terminal aryl alkenes to aldehydes and transformation of methyl aryl tertiary amines to formamides with H2O2 as a terminal oxidant
Anti-Markovnikov oxidation of terminal aryl alkenes to aldehydes and transformation of N-methyl aryl tertiary amines to formamides with H2O2 as a terminal oxidant under mild conditions have been achieved with moderate to good product yields using [FeIII(TF4DMAP)OTf] as catalyst.postprin
Transmission spectra and valley processing of graphene and carbon nanotube superlattices with inter-valley coupling
published_or_final_versio
Inhibitory Effect of Polysaccharides from Scutellaria barbata D. Don on Invasion and Metastasis of 95-D Cells Lines via Regulation of C-MET and E-CAD Expressions
Purpose: To investigate the inhibitory effect of polysaccharides from Scutellaria barbata (PSB) on invasion and metastasis of lung cancer, and study the possible mechanism.Methods: PSB was extracted with water and by alcohol precipitation, and purified by DEAE-52 column chromatography. A highly invasive and metastatic lung carcinoma cell, 95-D cell line, was used for the study. Cell adhesion and invasion assays in vitro were performed to evaluate the anti-invasive and antimetastatic effects of PSB (50 - 200 μg/ml) on 95-D cell. Immunocytochemical staining and Western blot techniques were employed to study the regulatory effects of PSB on the expression of C-MET and ECAD.Results: The results indicate that PSB significantly inhibited cell invasion and migration of 95-D in a concentration-dependent manner (p < 0.05). The adhesion of 95-D cells to fibronectin was also inhibited by PSB (p < 0.05). The expression of C-MET and E-CAD in 95-D cells treated with PSB were significantly down-regulated and up-regulated, respectivelt (p < 0.05).Conclusion: Treatment with PSB can significantly inhibit the invasion and metastasis of 95-D cells in vitro, probably through the regulation of C-MET and E-CAD.Keywords: Polysaccharide, Scutellaria barbata, 95-D cell lines, Invasion, Metastasi
Eliminación de DBP en aceite de onagra mediante arcilla activada modificada por chitosán y CTAB
The pollution of phthalic acid esters (PAEs) in edible oils is a serious problem. In the current study, we attempt to remove dibutyl phthalate ester (DBP) from evening primrose oil (EPO) with modified activated clay. The activated clay, commonly used for de-coloration in the oil refining process, was modified by chitosan and hexadecyl trimethyl ammonium bromide (CTAB). The modifications were characterized by SEM, XRD, and FT-IR. We further tested the DBP adsorption capacity of CTAB/chitosan-clay and found that the removal rate was 27.56% which was 3.24 times higher than with pristine activated clay. In addition, the CTAB/chitosan-clay composite treatment had no significant effect on the quality of evening primrose oil. In summary, the CTAB/chitosan-clay composite has a stronger DBP adsorption capacity and can be used as a new adsorbent for removing DBP during the de-coloration process of evening primrose oil.La contaminación por ésteres de ácido ftálico (PAEs) en los aceites comestibles es un problema grave. En el presente estudio, intentamos eliminar el éster de ftalato de dibutilo (DBP) del aceite de onagra (EPO) con arcilla activada modificada. La arcilla activada, comúnmente utilizada en la decoloración en el proceso de refinación de los aceites, fue modificada con chitosán y bromuro de hexadecil trimetil amonio (CTAB). Las modificaciones se caracterizaron mediante SEM, XRD y FT-IR. Además, probamos la capacidad de adsorción de DBP de CTAB / chitosán-arcilla y descubrimos que la tasa de eliminación era del 27,56%, que era 3,24 veces mayor que la arcilla activada pura. Además, el tratamiento compuesto de CTAB/chitosán-arcilla no tuvo un efecto significativo sobre la calidad del aceite de onagra. En resumen, el compuesto CTAB/chitosán-arcilla tiene una capacidad de adsorción de DBP más fuerte y se puede utilizar como un nuevo adsorbente para eliminar DBP durante el proceso de decoloración del aceite de onagra
CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma
Hepatocellular carcinoma (HCC) is one of the most common fatal malignancies but the molecular genetic basis of this disease remains unclear. By using genome-wide methylation profiling analysis, we identified CLDN3 as an epigenetically regulated gene in cancer. Here, we investigated its function and clinical relevance in human HCC. CLDN3 downregulation occurred in 87/114 (76.3%) of primary HCCs, where it was correlated significantly with shorter survival of HCC patients (P=0.021). Moreover, multivariate cyclooxygenase regression analysis showed that CLDN3 was an independent prognostic factor for overall survival (P=0.014). Absent expression of CLDN3 was also detected in 67% of HCC cell lines, which was significantly associated with its promoter hypermethylation. Ectopic expression of CLDN3 in HCC cells could inhibit cell motility, cell invasiveness, and tumor formation in nude mice. Mechanistic investigations suggested through downregulation of GSK3B, CTNNB1, SNAI2, and CDH2, CLDN3 could significantly suppress metastasis by inactivating the Wnt/β-catenin-epithelial mesenchymal transition (EMT) axis in HCC cells. Collectively, our findings demonstrated that CLDN3 is an epigenetically silenced metastasis suppressor gene in HCC. A better understanding of the molecular mechanism of CLDN3 in inhibiting liver cancer cell metastasis may lead to a more effective management of HCC patients with the inactivation of CLDN3.published_or_final_versio
Dual-path Convolutional Image-Text Embeddings with Instance Loss
© 2020 ACM. Matching images and sentences demands a fine understanding of both modalities. In this article, we propose a new system to discriminatively embed the image and text to a shared visual-textual space. In this field, most existing works apply the ranking loss to pull the positive image/text pairs close and push the negative pairs apart from each other. However, directly deploying the ranking loss on heterogeneous features (i.e., text and image features) is less effective, because it is hard to find appropriate triplets at the beginning. So the naive way of using the ranking loss may compromise the network from learning inter-modal relationship. To address this problem, we propose the instance loss, which explicitly considers the intra-modal data distribution. It is based on an unsupervised assumption that each image/text group can be viewed as a class. So the network can learn the fine granularity from every image/text group. The experiment shows that the instance loss offers better weight initialization for the ranking loss, so that more discriminative embeddings can be learned. Besides, existing works usually apply the off-the-shelf features, i.e., word2vec and fixed visual feature. So in a minor contribution, this article constructs an end-to-end dual-path convolutional network to learn the image and text representations. End-to-end learning allows the system to directly learn from the data and fully utilize the supervision. On two generic retrieval datasets (Flickr30k and MSCOCO), experiments demonstrate that our method yields competitive accuracy compared to state-of-the-art methods. Moreover, in language-based person retrieval, we improve the state of the art by a large margin. The code has been made publicly available
Climate changes reconstructed from a glacial lake in High Central Asiaover the past two millennia
Climatic changes in Arid Central Asia (ACA) over the past two millennia have been widely concerned. However, less attention has been paid to those in the High Central Asia (HCA), where the Asian water tower nurtures the numerous oases by glacier and/or snow melt. Here, we present a new reconstruction of the temperature and precipitation change over the past two millennia based on grain size of a well-dated glacial lake sediment core in the central of southern Tianshan Mountains. The results show that the glacial lake catchment has experienced cold-wet climate conditions during the Dark Age Cold Period (∼300–600 AD; DACP) and the Little Ice Age (∼1300–1870 AD; LIA), whereas warm-dry conditions during the Medieval Warm Period (∼700–1270 AD; MWP). Integration of our results with those of previously published lake sediment records, stalagmite δ18O records, ice core net accumulation rates, tree-ring based temperature reconstructions, and mountain glacier activities suggest that there has a broadly similar hydroclimatic pattern over the HCA areas on centennial time scale during the past two millennia. Comparison between hydroclimatic pattern of the HCA and that of the ACA areas suggests a prevailing 'warm-dry and cold-wet' hydroclimatic pattern over the whole westerlies-dominated central Asia areas during the past two millennia. We argue that the position and intensity of the westerlies, which are closely related to the phase of the North Atlantic Oscillation (NAO), and the strength of the Siberian High pressure (SH), could have jointly modulated the late Holocene central Asia hydroclimatic changes.<br /
Structural evolution of GeMn/Ge superlattices grown by molecular beam epitaxy under different growth conditions
GeMn/Ge epitaxial 'superlattices' grown by molecular beam epitaxy with different growth conditions have been systematically investigated by transmission electron microscopy. It is revealed that periodic arrays of GeMn nanodots can be formed on Ge and GaAs substrates at low temperature (approximately 70°C) due to the matched lattice constants of Ge (5.656 Å) and GaAs (5.653 Å), while a periodic Ge/GeMn superlattice grown on Si showed disordered GeMn nanodots with a large amount of stacking faults, which can be explained by the fact that Ge and Si have a large lattice mismatch. Moreover, by varying growth conditions, the GeMn/Ge superlattices can be manipulated from having disordered GeMn nanodots to ordered coherent nanodots and then to ordered nanocolumns
- …