20 research outputs found

    A cre-inducible DUX4 transgenic mouse model for investigating facioscapulohumeral muscular dystrophy

    Get PDF
    The Double homeobox 4 (DUX4) gene is an important regulator of early human development and its aberrant expression is causal for facioscapulohumeral muscular dystrophy (FSHD). The DUX4-full length (DUX4-fl) mRNA splice isoform encodes a transcriptional activator; however, DUX4 and its unique DNA binding preferences are specific to old-world primates. Regardless, the somatic cytotoxicity caused by DUX4 expression is conserved when expressed in cells and animals ranging from fly to mouse. Thus, viable animal models based on DUX4-fl expression have been difficult to generate due in large part to overt developmental toxicity of low DUX4-fl expression from leaky transgenes. We have overcome this obstacle and here we report the generation and initial characterization of a line of conditional floxed DUX4-fl transgenic mice, FLExDUX4, that is viable and fertile. In the absence of cre, these mice express a very low level of DUX4-fl mRNA from the transgene, resulting in mild phenotypes. However, when crossed with appropriate cre-driver lines of mice, the double transgenic offspring readily express DUX4-fl mRNA, protein, and target genes with the spatiotemporal pattern of nuclear cre expression dictated by the chosen system. When cre is expressed from the ACTA1 skeletal muscle-specific promoter, the double transgenic animals exhibit a developmental myopathy. When crossed with tamoxifen-inducible cre lines, DUX4-mediated pathology can be induced in adult animals. Thus, the appearance and progression of pathology can be controlled to provide readily screenable phenotypes useful for assessing therapeutic approaches targeting DUX4-fl mRNA and protein. Overall, the FLExDUX4 line of mice is quite versatile and will allow new investigations into mechanisms of DUX4-mediated pathophysiology as well as much-needed pre-clinical testing of DUX4-targeted FSHD interventions in vivo

    Downregulation of miRNA-29, -23 and -21 in urine of Duchenne muscular dystrophy patients

    No full text
    Aim: To study the signature of 87 urinary miRNAs in Duchenne muscular dystrophy (DMD) patients, select the most dysregulated and determine statistically significant differences in their expression between controls, ambulant (A) and nonambulant (NA) DMD patients, and patients on different corticosteroid regimens. Patients/materials & methods: Urine was collected from control (n = 20), A (n = 31) and NA (n = 23) DMD patients. miRNA expression was measured by reverse transcription-quantitative PCR. Results: miR-29c-3p was significantly downregulated in A DMD patients while miR-23b-3p and miR-21-5p were significantly downregulated in NA DMD patients compared with age-matched controls. Conclusion: miR-29c-3p, miR-23b-3p and miR-21-5p are promising novel noninvasive biomarkers for DMD, and miR- 29c-3p levels are differentially affected by different steroid regimens, supporting the antifibrotic effect of steroid therapy

    Altered Expression of Cyclin A 1 In Muscle of Patients with Facioscapulohumeral Muscle Dystrophy (FSHD-1)

    Get PDF
    OBJECTIVES: Cyclin A1 regulates cell cycle activity and proliferation in somatic and germ-line cells. Its expression increases in G1/S phase and reaches a maximum in G2 and M phases. Altered cyclin A1 expression might contribute to clinical symptoms in facioscapulohumeral muscular dystrophy (FSHD). METHODS: Muscle biopsies were taken from the Vastus lateralis muscle for cDNA microarray, RT-PCR, immunohistochemistry and Western blot analyses to assess RNA and protein expression of cyclin A1 in human muscle cell lines and muscle tissue. Muscle fibers diameter was calculated on cryosections to test for hypertrophy. RESULTS: cDNA microarray data showed specifically elevated cyclin A1 levels in FSHD vs. other muscular disorders such as caveolinopathy, dysferlinopathy, four and a half LIM domains protein 1 deficiency and healthy controls. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated cyclin A1 levels also at protein level. We found also clear signs of hypertrophy within the Vastus lateralis muscle in FSHD-1 patients. CONCLUSIONS: In most somatic human cell lines, cyclin A1 levels are low. Overexpression of cyclin A1 in FSHD indicates cell cycle dysregulation in FSHD and might contribute to clinical symptoms of this disease
    corecore