6 research outputs found

    Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure

    Get PDF
    Ultrafast electron thermalization - the process leading to Auger recombination, carrier multiplication via impact ionization and hot carrier luminescence - occurs when optically excited electrons in a material undergo rapid electron-electron scattering to redistribute excess energy and reach electronic thermal equilibrium. Due to extremely short time and length scales, the measurement and manipulation of electron thermalization in nanoscale devices remains challenging even with the most advanced ultrafast laser techniques. Here, we overcome this challenge by leveraging the atomic thinness of two-dimensional van der Waals (vdW) materials in order to introduce a highly tunable electron transfer pathway that directly competes with electron thermalization. We realize this scheme in a graphene-boron nitride-graphene (G-BN-G) vdW heterostructure, through which optically excited carriers are transported from one graphene layer to the other. By applying an interlayer bias voltage or varying the excitation photon energy, interlayer carrier transport can be controlled to occur faster or slower than the intralayer scattering events, thus effectively tuning the electron thermalization pathways in graphene. Our findings, which demonstrate a novel means to probe and directly modulate electron energy transport in nanoscale materials, represent an important step toward designing and implementing novel optoelectronic and energy-harvesting devices with tailored microscopic properties.Comment: Accepted to Nature Physic

    Vitamin C and asthma in children: modification of the effect by age, exposure to dampness and the severity of asthma

    Get PDF
    Retraction: Clinical and Translational Allergy 2012, 2:6BACKGROUND: We previously found a significant benefit of vitamin C supplementation in asthmatic children. PURPOSE: To test whether the effect of vitamin C on asthma is heterogeneous over the participant population. METHODS: Egyptian asthmatic children between 7 and 10 years of age (n = 60) were included in the cross-over trial. They were administered 0.2 grams per day of vitamin C and placebo for separate 6-week periods. The variation in the vitamin C effect on two clinically relevant outcomes was analyzed: the childhood asthma control test (C-ACT), which measures the severity of asthma symptoms (the scale ranges from 0 to 27 points, < 20 points indicating unsatisfactory asthma control), and FEV1. We used linear modeling to examine the variation of the vitamin C effect in the subgroups. RESULTS: The effect of vitamin C on the C-ACT was significantly modified by age and baseline C-ACT levels. In the children aged 7.0-8.2 years with a baseline C-ACT of 18 to 19 points, vitamin C increased the C-ACT score by 4.2 points (95% CI: 3.3-5.3); whereas in the children aged 8.3-10 years who had a baseline C-ACT of 14 to 15 points, vitamin C increased the C-ACT score by only 1.3 points (95% CI: 0.1-2.5). The effect of vitamin C on the FEV1 levels was significantly modified by age and exposure to dampness. In the children aged 7.0-8.2 years with no exposure to dampness, vitamin C increased the FEV1 level by 37% (95% CI: 34-40%), whereas in the children aged 8.3-10 years with exposure to dampness or mold in their bedroom more than one year prior to the study, vitamin C increased the FEV1 level by only 21% (95% CI: 18-25%). CONCLUSIONS: We found strong evidence that the effect of vitamin C on asthmatic children is heterogeneous. Further research is needed to confirm our findings and identify the groups of children who would receive the greatest benefit from vitamin C supplementation.Peer reviewe

    Syndromics: A Bioinformatics Approach for Neurotrauma Research

    Get PDF
    Substantial scientific progress has been made in the past 50 years in delineating many of the biological mechanisms involved in the primary and secondary injuries following trauma to the spinal cord and brain. These advances have highlighted numerous potential therapeutic approaches that may help restore function after injury. Despite these advances, bench-to-bedside translation has remained elusive. Translational testing of novel therapies requires standardized measures of function for comparison across different laboratories, paradigms, and species. Although numerous functional assessments have been developed in animal models, it remains unclear how to best integrate this information to describe the complete translational “syndrome” produced by neurotrauma. The present paper describes a multivariate statistical framework for integrating diverse neurotrauma data and reviews the few papers to date that have taken an information-intensive approach for basic neurotrauma research. We argue that these papers can be described as the seminal works of a new field that we call “syndromics”, which aim to apply informatics tools to disease models to characterize the full set of mechanistic inter-relationships from multi-scale data. In the future, centralized databases of raw neurotrauma data will enable better syndromic approaches and aid future translational research, leading to more efficient testing regimens and more clinically relevant findings
    corecore