41 research outputs found

    Disappeared persons and homicide in El Salvador

    Get PDF
    During 2012–2013, the homicide rate in El Salvador came down from 69.9 to 42.2 per 100,000 population following a government brokered truce between the leaders of the two major gangs, Mara Salvatrucha and Barrio 18. But despite the apparent successes of the truce, it was speculated that the drop in murders could have been due to the killers simply hid the bodies of their victims. This paper aims at determining whether gangs effectively disappeared their victims to cut down the official counts of murders, or they committed these crimes for other reasons. The results from this study suggest that Salvadoran gangs had been using disappearance as a method to gain sustained social control among residents of already gang-dominated areas, that together with homicide, disappearance is part of a process of territorial spread and strategic strengthening by which these groups are enhancing their capabilities to interfere in the alliances of Mexican drug trafficking organizations with Central American criminal organizations specializing in the trans-shipment of drugs and in providing access to local markets to distribute and sell drugs. Our findings show that the risk for disappearance has been large even before the truce was in place and that actually, it continues as such and going through a process of geographic expansion

    Shared component modelling as an alternative to assess geographical variations in medical practice: gender inequalities in hospital admissions for chronic diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small area analysis is the most prevalent methodological approach in the study of unwarranted and systematic variation in medical practice at geographical level. Several of its limitations drive researchers to use disease mapping methods -deemed as a valuable alternative. This work aims at exploring these techniques using - as a case of study- the gender differences in rates of hospitalization in elderly patients with chronic diseases.</p> <p>Methods</p> <p>Design and study setting: An empirical study of 538,358 hospitalizations affecting individuals aged over 75, who were admitted due to a chronic condition in 2006, were used to compare Small Area Analysis (SAVA), the Besag-York-Mollie (BYM) modelling and the Shared Component Modelling (SCM). Main endpoint: Gender spatial variation was measured, as follows: SAVA estimated gender-specific utilization ratio; BYM estimated the fraction of variance attributable to spatial correlation in each gender; and, SCM estimated the fraction of variance shared by the two genders, and those specific for each one.</p> <p>Results</p> <p>Hospitalization rates due to chronic diseases in the elderly were higher in men (median per area 21.4 per 100 inhabitants, interquartile range: 17.6 to 25.0) than in women (median per area 13.7 per 100, interquartile range: 10.8 to 16.6). Whereas Utilization Ratios showed a similar geographical pattern of variation in both genders, BYM found a high fraction of variation attributable to spatial correlation in both men (71%, CI95%: 50 to 94) and women (62%, CI95%: 45 to 77). In turn, SCM showed that the geographical admission pattern was mainly shared, with just 6% (CI95%: 4 to 8) of variation specific to the women component.</p> <p>Conclusions</p> <p>Whereas SAVA and BYM focused on the magnitude of variation and on allocating where variability cannot be due to chance, SCM signalled discrepant areas where latent factors would differently affect men and women.</p

    Genome of the facultative scuticociliatosis pathogen Pseudocohnilembus persalinus provides insight into its virulence through horizontal gene transfer

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ The attached file is the published version of the article

    Referral from secondary care and to aftercare in a tertiary care university hospital in Japan

    Get PDF
    BACKGROUND: In Japan, all citizens are covered by the national insurance system in which universal free access to healthcare services is promised to everybody. There are no general physicians or gatekeepers in the Japanese healthcare system. METHODS: We studied the pattern of referral of inpatients from secondary care hospitals to a tertiary care university hospital and the reverse referral under the situations using a geographic information system (GIS), taking paediatric inpatients as an example. RESULTS: The results showed that 61.2% of the patients were directly admitted to the hospital without referral from other hospitals or clinics and that 82.8% of the inpatients were referred to the outpatient department of the hospital to which they had been admitted. GIS analysis for the inpatients service area showed the hospital functions as both a secondary care hospital and tertiary care hospital. Patients who lived near the hospital tended to be admitted directly to the hospital, and patients who lived far from the hospital tended to utilize the hospital as a tertiary care provider. There were territorial disputes with other secondary care hospitals. To estimate spatial differences in referral to aftercare, we analyzed the spatial distribution of inpatients with focus on their length of hospital stay (LOS). GIS analysis revealed apparent foci of patients with long LOS and those with low LOS. CONCLUSION: These results suggest that the function of university hospital in Japan is unspecialized and that the referral route from the university hospital to aftercare is also unequipped

    Is there much variation in variation? Revisiting statistics of small area variation in health services research

    Get PDF
    Background: The importance of Small Area Variation Analysis for policy-making contrasts with the scarcity of work on the validity of the statistics used in these studies. Our study aims at 1) determining whether variation in utilization rates between health areas is higher than would be expected by chance, 2) estimating the statistical power of the variation statistics; and 3) evaluating the ability of different statistics to compare the variability among different procedures regardless of their rates.Methods: Parametric bootstrap techniques were used to derive the empirical distribution for each statistic under the hypothesis of homogeneity across areas. Non-parametric procedures were used to analyze the empirical distribution for the observed statistics and compare the results in six situations (low/medium/high utilization rates and low/high variability). A small scale simulation study was conducted to assess the capacity of each statistic to discriminate between different scenarios with different degrees of variation.Results: Bootstrap techniques proved to be good at quantifying the difference between the null hypothesis and the variation observed in each situation, and to construct reliable tests and confidence intervals for each of the variation statistics analyzed. Although the good performance of Systematic Component of Variation (SCV), Empirical Bayes (EB) statistic shows better behaviour under the null hypothesis, it is able to detect variability if present, it is not influenced by the procedure rate and it is best able to discriminate between different degrees of heterogeneity.Conclusion: The EB statistics seems to be a good alternative to more conventional statistics used in small-area variation analysis in health service research because of its robustness.1,66Q2SCI

    Bayesian Spatio-Temporal Modeling of Schistosoma japonicum Prevalence Data in the Absence of a Diagnostic ‘Gold’ Standard

    Get PDF
    Schistosomiasis is a serious public health problem in the People's Republic of China and elsewhere, and mapping of risk areas is important for guiding control interventions. Here, a 10-year surveillance database from Dangtu County in the southeastern part of the People's Republic of China was utilized for modeling the spatial and temporal distribution of infections in relation to environmental features and socioeconomic factors. Disease surveillance was done on the basis of a serological test, and we explicitly considered the imperfect sensitivity and specificity of the test when modeling the ‘true’ infection prevalence of Schistosoma japonicum. We then produced a risk map for S. japonicum transmission, which can assist decision making for local control interventions. Our work emphasizes the importance of accounting for the uncertainty in the diagnosis of schistosomiasis, and the potential of predicting the spatial and temporal distribution of the disease when using a Bayesian modeling framework. Our study can therefore serve as a template for future risk profiling of neglected tropical diseases studies, particularly when exploring spatial and temporal disease patterns in relation to environmental and socioeconomic factors, and how to account for the influence of diagnostic uncertainty

    Deprived children or deprived neighbourhoods? A public health approach to the investigation of links between deprivation and injury risk with specific reference to child road safety in Devon County, UK

    Get PDF
    BACKGROUND: Worldwide, injuries from road traffic collisions are a rapidly growing problem in terms of morbidity and mortality. The UK has amongst the worst records in Europe with regard to child pedestrian safety. A traditional view holds that resources should be directed towards training child pedestrians. In order to reduce socio-economic differentials in child pedestrian casualty rates it is suggested that these should be directed at deprived children. This paper seeks to question whether analysis of extant routinely collected data supports this view. METHODS: Routine administrative data on road collisions has been used. A deprivation measure has been assigned to the location where a collision was reported, and the home postcode of the casualty. Aggregate data was analysed using a number of epidemiological models, concentrating on the Generalised Linear Mixed Model. RESULTS: This study confirms evidence suggesting a link between increasing deprivation and increasing casualty involvement of child pedestrians. However, suggestions are made that it may be necessary to control for the urban nature of an area where collisions occur. More importantly, the question is raised as to whether the casualty rate is more closely associated with deprivation measures of the ward in which the collision occurred than with the deprivation measures of the home address of the child. CONCLUSION: Conclusions have to be drawn with great caution. Limitations in the utility of the officially collected data are apparent, but the implication is that the deprivation measures of the area around the collision is a more important determinant of socio-economic differentials in casualty rates than the deprivation measures of the casualties' home location. Whilst this result must be treated with caution, if confirmed by individual level case-controlled studies this would have a strong implication for the most appropriate interventions

    Choice of treatment for fever at household level in Malawi: examining spatial patterns

    Get PDF
    BACKGROUND: Although malaria imposes an enormous burden on Malawi, it remains a controllable disease. The key strategies for control are based on early diagnosis and prompt treatment with effective antimalarials. Its success, however, depends on understanding the factors influencing health care decision making at household level, which has implications for implementing policies aimed at promoting health care practices and utilization. METHODS: An analysis of patterns of treatment-seeking behaviour among care-givers of children of malarial fever in Malawi, based on the 2000 Malawi demographic and health survey, is presented. The choice of treatment provider (home, shop, or formal hospital care, others) was considered as a multi-categorical response, and a multinomial logistic regression model was used to investigate determinants of choosing any particular provider. The model incorporated random effects, at subdistrict level, to measure the influence of geographical location on the choice of any treatment provider. Inference was Bayesian and based on Markov chain Monte Carlo techniques. RESULTS AND CONCLUSION: Spatial variation was found in the choice of a provider and determinants of choice of any provider differed. Important risk factors included place of residence, access to media, care-giver's age and care factors including unavailability and inaccessibility of care. A greater effort is needed to improve the quality of malaria home treatment or expand health facility utilization, at all levels of administration if reducing malaria is to be realised in Malawi. Health promotion and education interventions should stress promptness of health facility visits, improved access to appropriate drugs, and accurate dosing for home-based treatments

    Malaria in Africa: Vector Species' Niche Models and Relative Risk Maps

    Get PDF
    A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km). Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes). For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis) these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The “additive” model assumes no interaction; the “minimax” model assumes maximum relative risk due to any vector in a cell; and the “competitive exclusion” model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease
    corecore