406 research outputs found

    Nonlinear structural response in jet fire in association with the interaction between fire loads and time-variant geometry and material properties

    Get PDF
    For safety design of structures against fire loads, time-variant geometry and material properties depending on the temperature should be considered with fluid-structure interaction (FSI) analysis. One-way FSI analysis is generally applied due to a time consuming task. But, it has big difference of structural response between conducting oneway and two-way FSI analysis. And two-way analysis is also affected by time increment of analysis for updating the geometry, and fire loads. The aim of this study is to investigate the effect of time increments on two-way FSI analysis of structures subjected to jet fire, and to suggest a proper time increment for two-way FSI analysis. In the present study, geometries and material properties are updated at every time increments, and kinds of two-way FSI analysis are performed with different time increments by using computational fluid dynamics (CFD) and nonlinear finite element analysis (NLFEA) and an interface program between CFD and NLFEA

    A Computational Method Based on the Integration of Heterogeneous Networks for Predicting Disease-Gene Associations

    Get PDF
    The identification of disease-causing genes is a fundamental challenge in human health and of great importance in improving medical care, and provides a better understanding of gene functions. Recent computational approaches based on the interactions among human proteins and disease similarities have shown their power in tackling the issue. In this paper, a novel systematic and global method that integrates two heterogeneous networks for prioritizing candidate disease-causing genes is provided, based on the observation that genes causing the same or similar diseases tend to lie close to one another in a network of protein-protein interactions. In this method, the association score function between a query disease and a candidate gene is defined as the weighted sum of all the association scores between similar diseases and neighbouring genes. Moreover, the topological correlation of these two heterogeneous networks can be incorporated into the definition of the score function, and finally an iterative algorithm is designed for this issue. This method was tested with 10-fold cross-validation on all 1,126 diseases that have at least a known causal gene, and it ranked the correct gene as one of the top ten in 622 of all the 1,428 cases, significantly outperforming a state-of-the-art method called PRINCE. The results brought about by this method were applied to study three multi-factorial disorders: breast cancer, Alzheimer disease and diabetes mellitus type 2, and some suggestions of novel causal genes and candidate disease-causing subnetworks were provided for further investigation

    Interleukin-17A mRNA and protein expression within cells from the human bronchoalveolar space after exposure to organic dust

    Get PDF
    BACKGROUND: In mice, the cytokine interleukin (IL)-17A causes a local accumulation of neutrophils within the bronchoalveolar space. IL-17A may thereby also contribute to an increased local proteolytic burden. In the current study, we determined whether mRNA for IL-17A is elevated and protein expression of IL-17A occurs locally in inflammatory cells within the human bronchoalveolar space during severe inflammation caused by organic dust. We also assessed the expression of the elastinolytic protease MMP-9 in this airway compartment. METHODS: Six healthy, non-smoking human volunteers were exposed to organic dust in a swine confinement, a potent stimulus of neutrophil accumulation within the human bronchoalveolar space. Bronchoalveolar lavage (BAL) fluid was harvested 2 weeks before and 24 hours after the exposure and total and differential counts were conducted for inflammatory BAL cells. Messenger RNA for IL-17A was measured using reverse transcript polymerase chain reaction-enzyme linked immunoassay (RT-PCR-ELISA). Intracellular immunoreactivity (IR) for IL-17A and MMP-9, respectively, was determined in BAL cells. RESULTS: The exposure to organic dust caused more than a forty-fold increase of mRNA for IL-17A in BAL cells. IL-17A immunoreactivity was detected mainly in BAL lymphocytes, and the number of these IL-17A expressing lymphocytes displayed an eight-fold increase, even though not statistically significant. The increase in IL-17A mRNA was associated with a substantial increase of the number of BAL neutrophils expressing MMP-9 immunoreactivity. CONCLUSION: Exposure to organic dust increases local IL-17A mRNA and because there is intracellular expression in BAL lymphocytes, this suggests that IL-17A protein can originate from lymphocytes within the human bronchoalveolar space. The fact that the increased IL-17A mRNA is associated with an increased number of MMP-9-expressing neutrophils is compatible with IL-17A increasing the local proteolytic burden through its neutrophil-accumulating effect

    Isolation and functional characterization of a Medicago sativa L. gene, MsLEA3-1

    Get PDF
    A full-length cDNA of 1,728 nt, called MsLEA3-1, was cloned from alfalfa by rapid amplification of cDNA ends from an expressed sequence tag homologous to soybean pGmPM10 (accession No. AAA91965.1). MsLEA3-1, encodes a deduced protein of 436 amino acids, a calculated molecular weight of 47.0 kDa, a theoretical isoelectric point of 5.18, and closest homology with late embryogenesis abundant proteins in soybean. Sequence homology suggested a signal peptide in the N terminus, and subcellular localization with GFP revealed that MsLEA3-1 was localized preferentially to the nucleolus. The transcript titre of MsLEA3-1 was strongly enriched in leaves compared with roots and stems of mature alfalfa plants. Gene expression of MsLEA3-1 was strongly induced when seedlings were treated with NaCl and ABA. Expression of the MsLEA3-1 transgenic was detected in transgenic tobacco. Malondialdehyde content and, electrical conductivity content were reduced and electrical conductivity and proline content were increased in transgenic tobacco compared with non-transgenic tobacco under salt stress. The results showed that accumulation of the MsLEA3-1 protein in the vegetative tissues of transgenic plants enhanced their tolerance to salt stress. These results demonstrate a role for the MsLEA3-1 protein in stress protection and suggest the potential of the MsLEA3-1 gene for genetic engineering of salt tolerance

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Prognostic Impacts of Angiopoietins in NSCLC Tumor Cells and Stroma: VEGF-A Impact Is Strongly Associated with Ang-2

    Get PDF
    INTRODUCTION: Angiopoietins and their receptor Tie-2 are, in concert with VEGF-A, key mediators in angiogenesis. This study evaluates the prognostic impact of all known human angiopoietins (Ang-1, Ang-2 and Ang-4) and their receptor Tie-2, as well as their relation to the prognostic expression of VEGF-A. METHODS: 335 unselected stage I-IIIA NSCLC-patients were included and tissue samples of respective tumor cells and stroma were collected in tissue microarrays (TMAs). Immunohistochemistry (IHC) was used to semiquantitatively evaluate the expression of markers in duplicate tumor and stroma cores. PRINCIPAL FINDINGS: In univariate analyses, low tumor cell expression of Ang-4 (P = 0.046) and low stromal expressions of Ang-4 (P = 0.009) and Ang-2 (P = 0.017) were individually associated with a poor survival. In the multivariate analysis, low stromal Ang-2 (HR 1.88; CI 95% 1.15-3.08) and Ang-4 (HR 1.47, CI 95% 1.02-2.11, P = 0.04) expressions were independently associated with a poor prognosis. In patients with high tumor cell expression of Ang-2, a concomitantly high tumor VEGF-A expression mediated a dramatic survival reduction (P<0.001). In the multivariate analysis of patients with high Ang-2 expression, high tumor VEGF-A expression appeared an independent poor prognosticator (HR 6.43; CI 95% 2.46-16.8; P<0.001). CONCLUSIONS: In tumor cells, only Ang-4 expression has prognostic impact in NSCLC. In tumor stroma, Ang-4 and Ang-2 are independently associated with survival. The prognostic impact of tumor cell VEGF-A in NSCLC appears strongly associated with a concomitantly high tumor cell expression of Ang-2

    Deep Sequencing of MYC DNA-Binding Sites in Burkitt Lymphoma

    Get PDF
    BACKGROUND: MYC is a key transcription factor involved in central cellular processes such as regulation of the cell cycle, histone acetylation and ribosomal biogenesis. It is overexpressed in the majority of human tumors including aggressive B-cell lymphoma. Especially Burkitt lymphoma (BL) is a highlight example for MYC overexpression due to a chromosomal translocation involving the c-MYC gene. However, no genome-wide analysis of MYC-binding sites by chromatin immunoprecipitation (ChIP) followed by next generation sequencing (ChIP-Seq) has been conducted in BL so far. METHODOLOGY/PRINCIPAL FINDINGS: ChIP-Seq was performed on 5 BL cell lines with a MYC-specific antibody giving rise to 7,054 MYC-binding sites after bioinformatics analysis of a total of approx. 19 million sequence reads. In line with previous findings, binding sites accumulate in gene sets known to be involved in the cell cycle, ribosomal biogenesis, histone acetyltransferase and methyltransferase complexes demonstrating a regulatory role of MYC in these processes. Unexpectedly, MYC-binding sites also accumulate in many B-cell relevant genes. To assess the functional consequences of MYC binding, the ChIP-Seq data were supplemented with siRNA- mediated knock-downs of MYC in BL cell lines followed by gene expression profiling. Interestingly, amongst others, genes involved in the B-cell function were up-regulated in response to MYC silencing. CONCLUSION/SIGNIFICANCE: The 7,054 MYC-binding sites identified by our ChIP-Seq approach greatly extend the knowledge regarding MYC binding in BL and shed further light on the enormous complexity of the MYC regulatory network. Especially our observations that (i) many B-cell relevant genes are targeted by MYC and (ii) that MYC down-regulation leads to an up-regulation of B-cell genes highlight an interesting aspect of BL biology

    The ubiquitin-like molecule interferon-stimulated gene 15 (ISG15) is a potential prognostic marker in human breast cancer

    Get PDF
    INTRODUCTION: ISG15 is an ubiquitin-like molecule that is strongly upregulated by type I interferons as a primary response to diverse microbial and cellular stress stimuli. However, alterations in the ISG15 signalling pathway have also been found in several human tumour entities. To the best of our knowledge, in the current study we present for the first time a systematic characterisation of ISG15 expression in human breast cancer and normal breast tissue both at the mRNA and protein level. METHOD: Using semiquantitative real-time PCR, cDNA dot-blot hybridisation and immunohistochemistry, we systematically analysed ISG15 expression in invasive breast carcinomas (n = 910) and normal breast tissues (n = 135). ISG15 protein expression was analysed in two independent cohorts on tissue microarrays; in an initial evaluation set of 179 breast carcinomas and 51 normal breast tissues; and in a second large validation set of 646 breast carcinomas and 10 normal breast tissues. In addition, a collection of benign and malignant mammary cell lines (n = 9) were investigated for ISG15 expression. RESULTS: ISG15 was overexpressed in breast carcinoma cells compared with normal breast tissue, both at the RNA and protein level. Recurrence-free (p = 0.030), event-free (p = 0.001) and overall (p = 0.001) survival analyses showed a significant correlation between ISG15 overexpression and unfavourable prognosis. CONCLUSION: Therefore, ISG15 may represent a novel breast tumour marker with prognostic significance and may be helpful in selecting patients for and predicting response to the treatment of human breast cancer
    corecore