109 research outputs found

    New mutations at the imprinted Gnas cluster show gene dosage effects of Gsα in postnatal growth and implicate XLαs in bone and fat metabolism, but not in suckling

    Get PDF
    The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLαs, XLN1, and ALEX or a double dose of maternally expressed Gsα to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of Gsα, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of Gsα and loss of expression of XLαs and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLαs, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLαs. This is, to our knowledge, the first report describing a role for XLαs in bone metabolism. We propose that XLαs is involved in the regulation of bone and adipocyte metabolism

    In vitro anti-HIV activity of some Indian medicinal plant extracts

    Get PDF
    Background Human Immunodeficiency Virus (HIV) persists to be a significant public health issue worldwide. The current strategy for the treatment of HIV infection, Highly Active Antiretroviral Therapy (HAART), has reduced deaths from AIDS related disease, but it can be an expensive regime for the underdeveloped and developing countries where the supply of drugs is scarce and often not well tolerated, especially in persons undergoing long term treatment. The present therapy also has limitations of development of multidrug resistance, thus there is a need for the discovery of novel anti-HIV compounds from plants as a potential alternative in combating HIV disease. Methods Ten Indian medicinal plants were tested for entry and replication inhibition against laboratory adapted strains HIV-1IIIB, HIV-1Ada5 and primary isolates HIV-1UG070, HIV-1VB59 in TZM-bl cell lines and primary isolates HIV-1UG070, HIV-1VB59 in PM1 cell lines. The plant extracts were further evaluated for toxicity in HEC-1A epithelial cell lines by transwell epithelial model. Results The methanolic extracts of Achyranthes aspera, Rosa centifolia and aqueous extract of Ficus benghalensis inhibited laboratory adapted HIV-1 strains (IC80 3.6–118 μg/ml) and primary isolates (IC80 4.8–156 μg/ml) in TZM-bl cells. Methanolic extract of Strychnos potatorum, aqueous extract of Ficus infectoria and hydroalcoholic extract of Annona squamosa inhibited laboratory adapted HIV-1 strains (IC80 4.24–125 μg/ml) and primary isolates (IC80 18–156 μg/ml) in TZM-bl cells. Methanolic extracts of Achyranthes aspera and Rosa centifolia, (IC801-9 μg/ml) further significantly inhibited HIV-1 primary isolates in PM1cells. Methanolic extracts of Tridax procumbens, Mallotus philippinensis, Annona reticulate, aqueous extract of Ficus benghalensis and hydroalcoholic extract of Albizzia lebbeck did not exhibit anti-HIV activity in all the tested strains. Methanolic extract of Rosa centifolia also demonstrated to be non-toxic to HEC-1A epithelial cells and maintained epithelial integrity (at 500 μg/ml) when tested in transwell dual-chamber. Conclusion These active methanolic extracts of Achyranthes aspera and Rosa centifolia, could be further subjected to chemical analysis to investigate the active moiety responsible for the anti-HIV activity. Methanolic extract of Rosa centifolia was found to be well tolerated maintaining the epithelial integrity of HEC-1A cells in vitro and thus has potential for investigating it further as candidate microbicide

    Knockdown of Midgut Genes by dsRNA-Transgenic Plant-Mediated RNA Interference in the Hemipteran Insect Nilaparvata lugens

    Get PDF
    BACKGROUND: RNA interference (RNAi) is a powerful technique for functional genomics research in insects. Transgenic plants producing double-stranded RNA (dsRNA) directed against insect genes have been reported for lepidopteran and coleopteran insects, showing potential for field-level control of insect pests, but this has not been reported for other insect orders. METHODOLOGY/PRINCIPAL FINDINGS: The Hemipteran insect brown planthopper (Nilaparvata lugens Stål) is a typical phloem sap feeder specific to rice (Oryza sativa L.). To analyze the potential of exploiting RNAi-mediated effects in this insect, we identified genes (Nlsid-1 and Nlaub) encoding proteins that might be involved in the RNAi pathway in N. lugens. Both genes are expressed ubiquitously in nymphs and adult insects. Three genes (the hexose transporter gene NlHT1, the carboxypeptidase gene Nlcar and the trypsin-like serine protease gene Nltry) that are highly expressed in the N. lugens midgut were isolated and used to develop dsRNA constructs for transforming rice. RNA blot analysis showed that the dsRNAs were transcribed and some of them were processed to siRNAs in the transgenic lines. When nymphs were fed on rice plants expressing dsRNA, levels of transcripts of the targeted genes in the midgut were reduced; however, lethal phenotypic effects after dsRNA feeding were not observed. CONCLUSIONS: Our study shows that genes for the RNAi pathway (Nlsid-1 and Nlaub) are present in N. lugens. When insects were fed on rice plant materials expressing dsRNAs, RNA interference was triggered and the target genes transcript levels were suppressed. The gene knockdown technique described here may prove to be a valuable tool for further investigations in N. lugens. The results demonstrate the potential of dsRNA-mediated RNAi for field-level control of planthoppers, but appropriate target genes must be selected when designing the dsRNA-transgenic plants

    Synthesis of Saturated Heterocycles via Metal-Catalyzed Formal Cycloaddition Reactions That Generate a C–N or C–O Bond

    Full text link

    Phytochemical screening and In-vitro antioxidant activity of Centella asiatica extracts

    No full text
    Centella asiatica also known as mandukparni or Indian pennywort or jalbrahmi, which has been used as a medicine in the Ayurveda from ancient times and mentioned in many classical texts of Ayurveda. Centella asiatica has long been used to improve memory and cognitive function.The study aimed to identify the phytochemicals present in different solvent extracts of Centella asiatica (i.e. PECA- Petroleum ether extract of C. asiatica, CCA- Chloroform extract of C. asiatica, EACA- Ethyl acetate extract of C. asiatica, ECA- Ethanolic extract of C. asiatica, HACA- Hydro-alcoholic extract of C. asiatica) and evaluate the respective in-vitro antioxidant potentials. The phytochemical screening of extracts was done with standardized procedures and the antioxidant potential of different solvent extracts of Centella asiatica was assessed by its free radical scavenging activity 2, 2-diphenyl -1- picrylhydrazyl (DPPH) as well as hydrogen peroxide scavenging assay respectively for reducing capability.In all different solvent extracts of C. asiatica revealed excellent free radical scavenging activity as revealed by 2-2- diphenyl-1-picryl-hydrazyl (DPPH) assay with  EC50 values for ECA=128.752±1.85 μg/ml, HACA=274.884±1.21 μg/ml and hydrogen peroxide assay against the standard (Butylated hydroxytoluene) BHT, with the EC50 values ECA=429.69±0.92 μg/ml HACA=458.08±0.58 μg/ml while rest solvent extracts shown very less antioxidant activity. The present study indicates that the Centella asiatica extracts have good antioxidant activity which can be used in stress and anxiety and also a good source to be used as natural drugs
    • …
    corecore