3,968 research outputs found
Classification of cryptocurrency coins and tokens by the dynamics of their market capitalisations
We empirically verify that the market capitalisations of coins and tokens in
the cryptocurrency universe follow power-law distributions with significantly
different values, with the tail exponent falling between 0.5 and 0.7 for coins,
and between 1.0 and 1.3 for tokens. We provide a rationale for this, based on a
simple proportional growth with birth & death model previously employed to
describe the size distribution of firms, cities, webpages, etc. We empirically
validate the model and its main predictions, in terms of proportional growth
(Gibrat's law) of the coins and tokens. Estimating the main parameters of the
model, the theoretical predictions for the power-law exponents of coin and
token distributions are in remarkable agreement with the empirical estimations,
given the simplicity of the model. Our results clearly characterize coins as
being "entrenched incumbents" and tokens as an "explosive immature ecosystem",
largely due to massive and exuberant Initial Coin Offering activity in the
token space. The theory predicts that the exponent for tokens should converge
to 1 in the future, reflecting a more reasonable rate of new entrants
associated with genuine technological innovations
UV Photofunctionalization Effect on Bone Graft in Critical One-Wall Defect around Implant: A Pilot Study in Beagle Dogs
published_or_final_versio
Vaccinia-related kinase 1 promotes hepatocellular carcinoma by controlling the levels of cell cycle regulators associated with G1/S transition
We identified the specific role of vaccinia-related kinase 1 (VRK1) in the progression of hepatocellular carcinoma (HCC) and evaluated its therapeutic and prognostic potential. VRK1 levels were significantly higher in HCC cell lines than a normal hepatic cell line, and were higher in HCC than non-tumor tissue. VRK1 knockdown inhibited the proliferation of SK-Hep1, SH-J1 and Hep3B cells; moreover, depletion of VRK1 suppressed HCC tumor growth in vivo. We also showed that VRK1 knockdown increased the number of G1 arrested cells by decreasing cyclin D1 and p-Rb while upregulating p21 and p27, and that VRK1 depletion downregulated phosphorylation of CREB, a transcription factor regulating CCND1. Additionally, we found that luteolin, a VRK1 inhibitor, suppressed HCC growth in vitro and in vivo, and that the aberrant VRK1 expression correlated with poor prognostic features of HCC. High levels of VRK1 were associated with shorter overall and disease-free survival and higher recurrence rates. Taken together, our findings suggest VRK1 may act as a tumor promoter by controlling the level of cell cycle regulators associated with G1/S transition and could potentially serve as a therapeutic target and/or prognostic biomarker for HCC.1110Ysciescopu
A Reaction Between High Mn-High Al Steel and CaO-SiO2-Type Molten Mold Flux: Part I. Composition Evolution in Molten Mold Flux
In order to elucidate the reaction mechanism between high Mn-high Al steel such as twin-induced plasticity steel and molten mold flux composed mainly of CaO-SiO2 during continuous casting process, a series of laboratory-scale experiments were carried out in the present study. Molten steel and molten flux were brought to react in a refractory crucible in a temperature range between 1713 K to 1823 K (1440 A degrees C to 1550 A degrees C) and composition evolution in the steel and the flux was analyzed using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and electron probe microanalysis. The amount of SiO2 in the flux was significantly reduced by Al in the steelthus, Al2O3 was accumulated in the flux as a result of a chemical reaction, 4[Al] + 3(SiO2) = 3[Si] + 2(Al2O3). In order to find a major factor which governs the reaction, a number of factors ((pct CaO/pct SiO2), (pct Al2O3), [pct Al], [pct Si], and temperature) were varied in the experiments. It was found that the above chemical reaction was mostly governed by [pct Al] in the molten steel. Temperature had a mild effect on the reaction. On the other hand, (pct CaO/pct SiO2), (pct Al2O3), and [pct Si] did not show any noticeable effect on the reaction. Apart from the above reaction, the following reactions are also thought to happen simultaneously: 2[Mn] + (SiO2) = [Si] + 2(MnO) and 2[Fe] + (SiO2) = [Si] + 2(FeO). These oxide components were subsequently reduced by Al in the molten steel. Na2O in the molten flux was gradually decreased and the decrease was accelerated by increasing [pct Al] and temperature. Possible reactions affecting the Al2O3 accumulation are summarized.ope
Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection
Pandemics in poultry caused by the highly pathogenic avian influenza (HPAI) A virus occur too frequently globally, and there is growing concern about the HPAI A virus due to the possibility of a pandemic among humans. Thus, it is important to develop a vaccine against HPAI suitable for both humans and animals. Various approaches are underway to develop such vaccines. In particular, an edible vaccine would be a convenient way to vaccinate poultry because of the behaviour of the animals. However, an edible vaccine is still not available. In this study, we developed a strategy of effective vaccination of mice by the oral administration of transgenic Arabidopsis plants (HA-TG) expressing haemagglutinin (HA) in the endoplasmic reticulum (ER). Expression of HA in the ER resulted in its high-level accumulation, N-glycosylation, protection from proteolytic degradation and long-term stability. Oral administration of HA-TG with saponin elicited high levels of HA-specific systemic IgG and mucosal IgA responses in mice, which resulted in protection against a lethal influenza virus infection with attenuated inflammatory symptoms. Based on these results, we propose that oral administration of freeze-dried leaf powders from transgenic plants expressing HA in the ER together with saponin is an attractive strategy for vaccination against influenza A virus.X111411Ysciescopu
Inferring short-term volatility indicators from Bitcoin blockchain
In this paper, we study the possibility of inferring early warning indicators
(EWIs) for periods of extreme bitcoin price volatility using features obtained
from Bitcoin daily transaction graphs. We infer the low-dimensional
representations of transaction graphs in the time period from 2012 to 2017
using Bitcoin blockchain, and demonstrate how these representations can be used
to predict extreme price volatility events. Our EWI, which is obtained with a
non-negative decomposition, contains more predictive information than those
obtained with singular value decomposition or scalar value of the total Bitcoin
transaction volume
SUMO-Specific Protease 2 (SENP2) Is an Important Regulator of Fatty Acid Metabolism in Skeletal Muscle
Small ubiquitin-like modifier (SUMO)-specific proteases (SENPs) that reverse protein modification by SUMO are involved in the control of numerous cellular processes, including transcription, cell division, and cancer development. However, the physiological function of SENPs in energy metabolism remains unclear. Here, we investigated the role of SENP2 in fatty acid metabolism in C2C12 myotubes and in vivo. In C2C12 myotubes, treatment with saturated fatty acids, like palmitate, led to nuclear factor-B-mediated increase in the expression of SENP2. This increase promoted the recruitment of peroxisome proliferator-activated receptor (PPAR) and PPAR, through desumoylation of PPARs, to the promoters of the genes involved in fatty acid oxidation (FAO), such as carnitine-palmitoyl transferase-1 (CPT1b) and long-chain acyl-CoA synthetase 1 (ACSL1). In addition, SENP2 overexpression substantially increased FAO in C2C12 myotubes. Consistent with the cell culture system, muscle-specific SENP2 overexpression led to a marked increase in the mRNA levels of CPT1b and ACSL1 and thereby in FAO in the skeletal muscle, which ultimately alleviated high-fat diet-induced obesity and insulin resistance. Collectively, these data identify SENP2 as an important regulator of fatty acid metabolism in skeletal muscle and further implicate that muscle SENP2 could be a novel therapeutic target for the treatment of obesity-linked metabolic disorders.11116Ysciescopu
Dopamine Regulation of Amygdala Inhibitory Circuits for Expression of Learned Fear.
GABAergic signaling in the amygdala controls learned fear, and its dysfunction potentially contributes to posttraumatic stress disorder (PTSD). We find that sub-threshold fear conditioning leads to dopamine receptor D4-dependent long-term depression (LTD) of glutamatergic excitatory synapses by increasing inhibitory inputs onto neurons of the dorsal intercalated cell mass (ITC) in the amygdala. Pharmacological, genetic, and optogenetic manipulations of the amygdala regions centered on the dorsal ITC reveal that this LTD limits less salient experiences from forming persistent memories. In further support of the idea that LTD has preventive and discriminative roles, we find that LTD at the dorsal ITC is impaired in mice exhibiting PTSD-like behaviors. These findings reveal a novel role of inhibitory circuits in the amygdala, which serves to dampen and restrict the level of fear expression. This mechanism is interfered with by stimuli that give rise to PTSD and may also be recruited for fear-related psychiatric diseases.1110Ysciescopu
Algebraic charge liquids
High temperature superconductivity emerges in the cuprate compounds upon
changing the electron density of an insulator in which the electron spins are
antiferromagnetically ordered. A key characteristic of the superconductor is
that electrons can be extracted from them at zero energy only if their momenta
take one of four specific values (the `nodal points'). A central enigma has
been the evolution of the zero energy electrons in the metallic state between
the antiferromagnet and the superconductor, and recent experiments yield
apparently contradictory results. The oscillation of the resistance in this
metal as a function of magnetic field indicate that the zero energy electrons
carry momenta which lie on elliptical `Fermi pockets', while ejection of
electrons by high intensity light indicates that the zero energy electrons have
momenta only along arc-like regions. We present a theory of new states of
matter, which we call `algebraic charge liquids', which arise naturally between
the antiferromagnet and the superconductor, and reconcile these observations.
Our theory also explains a puzzling dependence of the density of
superconducting electrons on the total electron density, and makes a number of
unique predictions for future experiments.Comment: 6+8 pages, 2 figures; (v2) Rewritten for broader accessibility; (v3)
corrected numerical error in Eq. (5
- …
