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High temperature superconductivity of the cuprates emerges upon changing

the electron density of an insulator in which the electron spins are antiferro-

magnetically ordered. A key characteristic of the superconductor [1] is that

electrons can be extracted from them at zero energy only if their momenta take

one of four specific values at the ‘nodal points’. A central enigma has been the

evolution of the zero energy electrons in the metallic state between the anti-

ferromagnet and the superconductor, and recent experiments yield apparently

contradictory results. Resistance oscillations in a magnetic field [2, 3] indicate

the zero energy electrons lie on elliptical ‘Fermi pockets’, while photoemission

[4, 5] indicates they lie on arc-like regions. We describe new states of matter,

called ‘algebraic charge liquids’, which arise naturally between the antiferro-

magnet and the superconductor, and reconcile these observations. Our theory

also explains the density of superconducting electrons, and makes a number of

unique predictions for future experiments.

Soon after the discovery of high temperature superconductivity, Anderson [6] presented

influential ideas on its connection to a novel type of insulator, in which the electron falls

apart into emergent fractional particles which separately carry its spin and charge. These

ideas have been extensively developed [7], and can explain the nodal zero-energy electron

states in the superconductor. However, it is now known that the actual cuprate insulators

are not of this type, and instead have conventional antiferromagnetic order, with the electron

spins aligned in a checkerboard pattern on the square lattice. A separate set of ideas [8]

take the presence of antiferromagnetic order in the insulator seriously, but require a specific

effort to induce zero energy nodal electrons in the superconductor.

Our theory of algebraic charge liquids (ACLs) uses the the recently developed theoretical

http://arXiv.org/abs/0706.2187v3
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framework of ‘deconfined quantum criticality’ [9] to describe the quantum fluctuations of

the electrons. We show how this framework naturally combines the virtues of the earlier

approaches: we begin with the antiferromagnetic insulator, but obtain electron fractional-

ization upon changing the electron density. A number of experimental observations in the

so-called ‘underdoped’ region between the antiferromagnet and the superconductor also fall

neatly into place.

A key characteristic of an ACL is the presence of an emergent fractional particle which

carries charge e, no spin, and has Fermi statistics. We shall refer to this fermion as a ‘holon’.

The holon comes in two species, carrying charges ±1 in its interaction with an emergent

gauge field aµ, where µ is a spacetime index; this is a U(1) gauge field, similar to ordinary

electromagnetism. However, the analog of the electromagnetic fine structure constant is of

order unity for aµ, and so its quantum fluctuations have much stronger effects. We also

introduce operators f †
± which create holons with charges ±1. ¿From the f± and aµ we can

construct a variety of observables whose correlations decay with a power-law as function

of distance or time in an ACL. These include valence-bond-solid and charge-density wave

orders similar to those observed in recent scanning-tunnelling microscopy experiments [10].

While the f± carry the charge of the electron in the ACL, the spin of the electron resides

on another fractional particle, the ‘spinon’, with field operator zα where α =↑, ↓ is the spin

index. The spinon is electrically neutral, and also carries aµ gauge charge. In an ACL, the

spinon is simply related to the antiferromagnetic order parameter; if n̂ is the unit vector

specifying the local orientation of the checkerboard spin ordering, then n̂ = z†~σz, where ~σ

are the Pauli matrices.

The nomenclature ‘ACL’ signals a formal connection to the previously studied insulating

‘algebraic spin liquids’ [9, 11, 12, 13, 14] which have power-law spin correlations, and of which

the deconfined critical point is a particular example. However, the observable properties of

the ACLs are completely different, with the ‘algebraic’ (or, equivalently ‘critical’) correlations

residing in the charge sector.

We begin our more detailed presentation of the ACLs by first considering the simpler state

in which long-range antiferromagnetic order is preserved, but a density x of electrons (per

Cu atom) have been removed from the insulator. This is the AF Metal of Fig. 1. This state

has been extensively discussed and well understood in the literature, and its properties have

been recently summarized in Ref. [15] using the same language we use here. Each missing
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electron creates a charge e, spin S = 1/2 fermionic ‘hole’ (to be distinguished from the

spinless ‘holon’) in the antiferromagnetic state. It is known that the momenta of the holes

reside in elliptical Fermi pockets centered at the points Ki = (±π/2a,±π/2a) in the square

lattice Brillouin zone (of lattice spacing a) - see Fig 2. This is a conventional metallic state,

not an ACL, with hole-like zero energy excitations (or equivalently, the hole ‘Fermi surface’)

along the dashed lines in Fig 2. In such a state, both the oscillations of the resistance as a

function of applied magnetic field (SdH for Shubnikov-de Haas) and emission of electrons by

light (ARPES for angle-resolved photoemission) would indicate zero energy electron states

at the same momenta: along the dashed lines in Fig 2.

Now let us destroy the antiferromagnetic order by considering the vicinity of the decon-

fined critical point in the insulator [9]. Arguments were presented in Ref. [15] that we obtain

a stable metallic state in which the electron fractionalizes into particles with precisely the

quantum numbers of the f± and the zα described above. This is the holon metal phase:

a similar phase was discussed in early work by Lee [16], but its full structure was clarified

recently [15]. Below we will discuss the properties of the holon metal, and of a number of

other ACLs that descend from it.

(i) Holon metal.

There is full spin rotation symmetry, and a positive energy (the spinon energy gap) is

required to create a zα spinon. The zero energy holons inherit the zero energy hole states

of the AF Metal, and so they reside along the dashed elliptical pockets in Fig 2, and these

will yield SdH oscillations characteristic of these pockets [17]. However, the view from

ARPES experiments is very different—the distinction between SdH and ARPES views is a

characteristic property of all ACLs. The physical electron is a composite of zα and f±, and so

the ARPES spectrum will have no zero energy states, and only a broad absorption above the

spinon energy gap. The frequency F of the SdH oscillations is given by the Onsager-Lifshitz

relation

F = Φ0A/(2π
2), (1)

where Φ0 = hc/(2e) is the flux quantum, and A is the area in momentum space enclosed

by the fermionic zero-energy charge carriers. For the holons, this area is specified by the
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Luttinger relation: there are 4 independent holon pockets, and the area of each pocket is

Aholon = (2π)2x/(4a2). (2)

(ii) Holon-hole metal

This is our candidate state for the normal state of the cuprates at low hole density (see

Fig 1). It is obtained from the holon metal when some of the holons and spinons bind to

form a charge e, S = 1/2 particle, which is, of course, the conventional hole, neutral under

the aµ charge. This binding is caused by the nearest-neighbor electron hopping, and the

computation of the dispersion of the bound state is described in the supplement. Now the

metal has both holons and hole charge carriers, and both have independent zero energy

states, i.e. Fermi surfaces. These Fermi surfaces are shown in Fig. 2, and both enclosed

areas will contribute a SdH frequency via Eq. (1). The values of the areas depend upon

specific parameter values, but the Luttinger relation does yield the single constraint

Aholon + 2Ahole = (2π)2x/(4a2); (3)

the factor of 2 prefactor of Ahole is due to S = 1/2 spin of the holes. This relation can offer

an explanation of the recent experiment [2] which observed SdH oscillations at a frequency

of 530T . We propose that these oscillations are due to the holon states. The holon density

may then be inferred to be 0.076 per Cu site while the total doping is x = 0.1. The missing

density resides in the hole pockets, which by Eq. (3) will also exhibit oscillations at the

frequency associated with the area [(2π)2/(4a2)] × 0.012. The presence of SdH oscillations

at this lower frequency is a key prediction of our theory which we hope will be tested

experimentally. ARPES experiments detect only the hole Fermi surface, i.e. the ‘bananas’

in Fig. 2. With a finite momentum width due to impurity scattering, and the very small area

of each banana, the holon-hole metal also accounts for the arc-like regions observed in current

ARPES experiments [1, 4, 5]. Furthermore, because the nearest neighbor electron hopping

is suppressed by local antiferromagnetic correlations, we expect the binding to increase with

temperature, and this possibly accounts for the observed temperature dependence of the

arcs [5].

(iii) Holon superconductor.
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Upon lowering the temperature in the holon metal, the holons pair to form a composite

boson which is neutral under the aµ charge, and the condensation of this boson leads to the

holon superconductor. Just as we determined the holon dispersion in the holon metal phase

by referring to previous work in the proximate AF metal, we can determine the nature of

the pair wavefunction by extrapolating from the state with co-existing antiferromagnetism

and superconductivity in Fig 1. The latter state was studied by Sushkov and collaborators

[18, 19], and they found that holes paired with d-wave symmetry. Hence the AF+dSC state

in Fig 1. We assume that the same pairing amplitude extends into the ACL obtained by

restoring spin rotation symmetry and inducing a spinon energy gap. The resulting holon

superconductor is not smoothly connected to the conventional BCS d-wave superconductor

because of the spin gap. The theory describing the low energy excitations of the holons in

the holon superconductor is developed in the supplement: it is found to be a mathematical

structure know as a conformal field theory (CFT). The present CFT has the U(1) gauge

field aµ coupled minimally to N = 4 species of Dirac fermions, ψi (i = 1 . . .N), which are

descended from the f± holons after pairing. Such CFTs have been well-studied in other

contexts [11, 12, 13, 20]. For us, the important utility of the CFT is that it allows us to

compute the temperature (T ) and x dependence of the density of superfluid electron, ρs

(measured in units of energy through its relation to the London penetration depth, λL by

ρs = h̄2c2d/(16πe2λ2
L), with d the spacing between the layers in the cuprates). For this, we

need the coupling of the CFT to the vector potential ~A of the electromagnetic field: this is

studied in the supplement and has the form ~j · ~A where ~j is a conserved ‘flavor’ current of

the Dirac fermions ψi. The T dependence of ρs is then related to the T dependence of the

susceptibility associated with ~j: such susceptiblities were computed in Ref. [21]. In a similar

manner we found that as T → 0 at small x

ρs(x, T ) = c1x−RkBT (4)

where c1 is a non-universal constant and R is a universal number characteristic of CFT.

Remarkably, such a ρs is seen in experiments [22, 23, 24] on the cuprates over a range of

T and x. The phenomenological importance of such a ρs(x, T ) was pointed out by Lee and

Wen [26], although Eq. (4) has not been obtained in any earlier theory [27]. The holon

superconductor provides an elegant route to this behavior, moreover with R universal. We
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analyzed the CFT in a 1/N expansion and obtained

R = 0.4412 +
0.307(2)

N
. (5)

We note that in the cuprates, there is a superconductor-insulator transition at a non-zero

x = xc, and in its immediate vicinity distinct quantum critical behavior of ρs is expected, as

has been observed recently[25]. However, in characterizing different theories of the under-

doped regime, it is useful to consider the behavior as x→ 0 assuming the superconductivity

survives until x = 0. In this limit, our present theory is characterized by dρs/dT ∼ constant,

while theories of Refs. [27, 28] have dρs/dT ∼ x2.

(iv) Holon-hole superconductor.

This is our candidate state of the superconductor at low hole density (see Fig 1). It is

obtained from a pairing instability of the holon-hole metal, just as the holon superconductor

was obtained from the holon metal. It is a modified version of the holon superconductor,

which has in addition low energy excitations from the paired holes. The latter will yield

the observed V-shaped spectrum in tunneling measurements. The holon-hole metal will also

have a residual metallic thermal conductivity at low T in agreement with experiment. For

ρs(x, T ) we will obtain in addition to the terms in Eq. (4), a contribution from the nodal

holes to dρs/dT . This contribution can be computed using the considerations presented in

Refs. [26, 27]: it has only a weak x-dependence coming from the ratio of the velocities (which

can in principle be extracted from ARPES) in the two spatial directions. In particular, the

holes carry a current ∼ 1 and not ∼ x; the latter is the case in other theories [27, 28] of

electron fractionalization which consequently have dρs/dT ∼ x2.

Perhaps the most dramatic implication of these ideas is the possibility that the supercon-

ducting ground state of the underdoped cuprates is not smoothly connected to the conven-

tional superconductors described by the theory of Bardeen, Cooper, and Schrieffer(BCS).

With the reasonable additional assumption that such a BCS ground state is realized in

the overdoped cuprates, it follows that our proposal requires at least one quantum phase

transition inside the superconducting dome.
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METHODS

We represent the electron operator[15] on square lattice site r and spin α =↑, ↓ as

crα ∼ f †
r zrα r ∈ A (6)

∼ εαβf
†
r z

∗
rβ r ∈ B (7)

where A,B are the 2 sublattices, and εαβ is the unit antisymmetric tensor. The fr are

spinless charge-e fermions carrying opposite aµ gauge charge ±1 on the 2 sublattices. They

will be denoted f± respectively. The effective action of the doped antiferromagnet on the

square lattice has the structure

S = Sz + Sf + St

Sz =

∫

dτ
∑

r

1

g
|∂τz|

2 −
∑

〈rr′〉

1

g′
(z∗rzr′ + c.c.)

Sf =

∫

dτ
∑

s=±

∑

K

f †
s (K) (∂τ + ǫK − µh) fs(K)

St =

∫

dτκ0

∑

r

c†rcr − κ
∑

〈rr′〉

c†rcr′ + c.c., (8)

where K is a momentum extending over the diamond Brillouin zone in Fig. 2. Sz is the

lattice action for spinons. Sf describes holons hopping on the same sublattice, preserving the

sublattice index s = ±1; the holon dispersion ǫK has minima at the Ki, and µh is the holon

chemical potential. The first term in St describes an on-site electron chemical potential;

the second to opposite sublattice electron hopping between nearest neighbors; the coupling

κ is expected to be significantly renormalized down by the local antiferromagnetic order

from the bare electron hopping element t. We have not included the aµ gauge field in the

above action which is easily inserted by the requirements of gauge invariance and minimal

coupling.

For small g, g′, the zα condense, and we obtain the familiar AF Metal state with hole

pockets (see Fig. 1). For larger g, g′ we reach the holon metal phase [15], in which the z

are gapped. The St term leads to two distinct (but not exclusive) instabilities of the holon

metal phase: towards pairing of the f± holons and the formation of bound states between

the holons and spinons. These lead, respectively, to the holon superconductor and the

holon-hole metal (and to holon-hole superconductor when both are present). The St term
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will also significantly modify the spin correlation spectrum, likely inducing incommensurate

spin correlations [29], but this we will not address here.

Consider, first, the instability due to pairing between opposite gauge charges, 〈f †
+f

†
−〉 6= 0

so that the order parameter carries physical charge 2e, spin 0, and gauge charge 0. The aµ

gauge symmetry remains unbroken. The low energy theory of the holon superconductor has

gapless nodal Dirac holons ψi coupled to the gauge field aµ with the action

Sholon superconductor =

∫

dτd2R

[

1

2e20
(ǫµνλ∂νaλ)

2

+

4
∑

i=1

ψ†
i (Dτ − ivFDXτ

x − ivFDY τ
z)ψi

]

(9)

Here µ, ν, λ, ... are spacetime indices (τ,X, Y ), and Dµ = ∂µ − iaµ. This describes massless

QED3 theory with N = 4 species of 2-component Dirac fermions which flows (within a 1/N

expansion) at low energies to a stable fixed point [11, 12] describing a CFT.

As the superconductivity arises through pairing of holons from a Fermi surface of area

∝ x, the superfluid density ρs(x, 0) ∝ x. At T > 0 we need to include thermal excitation

of unpaired holons, which are coupled to the vector potential ~A of the physical electromag-

netism by

HA =
∑

is

∑

k

~A ·
∂ǫki

∂~k
f †

iksfiks ≡ ~j. ~A

In terms of the Dirac fermions these are readily seen to correspond to conserved “charges”

of Eq. (9). The susceptibility associated with these charges is ∝ T [21], and so we obtain

Eqn. 4.

Next we consider the κ-induced holon-spinon binding in the holon metal which leads to

the appearance of the holon-hole metal at low temperatures. St is a momentum dependent

attractive contact interaction proportional to κ0 − κγK , with γK = (cos(Kx) + cos(Ky))

between a holon and spinon with center-of-mass momentum K We discuss the energy of

a bound holon-spinon composite using a non-relativistic Schrodinger equation assuming

initially that only a single holon is injected into the paramagnet and ignoring gauge inter-

actions. Consider a single holon valley (say valley 1). Taking a parabolic holon dispersion

near ~K1

Ef (~k) =
k2

2mh

(10)
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with ~k = ~K − ~K1, and a spinon dispersion

Es(~k) = ∆s +
k2

2∆s

(11)

centered at (0, 0) the energy of the holon-spinon composite will be

Eh(~k) =
k2

2M
+ ∆s − Ebind(~k) (12)

where M = mh + ∆s. Define

φ(~r) =





φ+(~r)

φ−(~r)



 . (13)

with φ±(~r) the wavefunctions of a composite of a ±-holon and a spinon separated by ~r and

with center-of-mass momentum ~k. This satisfies the Schrodinger equation

(

−
∇2

2ρ
− (κ0 − κσxγ̃(k))δ2(~r)

)

φ = −Ebindφ (14)

where ρ = mh∆s/(mh +∆s) and γ̃(k) = γ( ~K1 +~k) = −(sin kx +sin ky). (σx is a Pauli matrix

acting on φ.) For the momenta of interest, this gives a ~k-dependent hole binding energy

E
(1)
bind ≈ V0 − V1γ̃(~k) (15)

with V0, V1 > 0. Thus the dispersion for h1 becomes

Eh1(~k) =
k2

2M
+ ∆s − V0 + V1γ̃(~k) (16)

The minimum of Eh1 is at a non-zero energy. Further as a function of kX = (kx+ky)/2 it is

shifted along the positive kX direction by an amount 2MV1 cos(kY ) with kY = (−kx +ky)/2.

Considering both holon and hole bands, it is clear that with increasing doping both bands

will be occupied to get a holon-hole metal. In the full Brillouin zone h1 is at momentum

− ~K1 so that the hole Fermi surface lies entirely inside the diamond region and has the rough

banana shape shown in Fig. 2. The gauge interaction can now be included and leads to the

properties discussed in the main text.
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AF
Mott

Insulator AF
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Algebraic 
charge liquid

Superconducting 
algebraic charge liquid

FIG. 1: Schematic phase diagram at small x. Here T is the temperature, and x is the density

of electrons (per Cu atom) which have been removed from the insulator. The phases labelled “AF”

have long-range antiferromagnetic order. The AF+dSC state also has d-wave superconductivity

and was described in Ref. [18, 19]. For the cuprates, we propose that the ACL phase above

is a holon-hole metal, while the superconducting ACL is the holon-hole superconductor. The

conventional Fermi liquid metal and BCS superconductor appear at larger x, and are not shown.
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K2

Q1
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FIG. 2: Square lattice Brillouin zone containing the ‘diamond’ Brillouin zone (dashed

line). In the AF Metal, only the dashed ellipses are present, and they represent Fermi surfaces

of S = 1/2, charge e holes which are visible in both ARPES and SdH. In the holon metal, these

dashed ellipses become spinless charge e holon Fermi surfaces, and are visible only in SdH. The

full line ‘bananas’ are the hole Fermi surfaces present only in the holon-hole metal, and detectable

in both SdH and ARPES.
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