3 research outputs found

    In vitro antimicrobial assessment of Cuban propolis extracts

    No full text
    Propolis is a resinous mixture of different plant exudates collected by honeybees. Currently, propolis is widely used as a food supplement and in folk medicine. We have evaluated 20 Cuban propolis extracts of different chemical types, brown (BCP), red and yellow (YCP), with respect to their in vitro antibacterial, antifungal and antiprotozoal properties. The extracts inhibited the growth of Staphylococcus aureus and Trichophyton rubrum at low µg/mL concentrations, whereas they were not active against Escherichia coli and Candida albicans. The major activity of the extracts was found against the protozoa Leishmania, Trypanosoma and Plasmodium, although cytotoxicity against MRC-5 cells was also observed. The BCP-3, YCP-39 and YCP-60 extracts showed the highest activity against P. falciparum, with 50% of microbial growth (IC50) values of 0.2 µg/mL. A positive correlation between the biological activity and the chemical composition was observed for YCP extracts. The most promising antimicrobial activity corresponds to YCP subtype B, which contains acetyl triterpenes as the main constituents. The present in vitro study highlights the potential of propolis against protozoa, but further research is needed to increase selectivity towards the parasite. The observed chemical composition-activity relationship of propolis can contribute to the identification of the active principles and standardisation of this bee product

    Chemical Composition and Biological Activity of Extracts Obtained by Supercritical Extraction and Ethanolic Extraction of Brown, Green and Red Propolis Derived from Different Geographic Regions in Brazil

    No full text

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore