216 research outputs found

    Dorsal Column Degeneration after Bortezomib Therapy in a Patient with Multiple Myeloma

    Get PDF
    We present here a case of dorsal column degeneration in a female patient with multiple myeloma following exposure to bortezomib. Two days after intravenous administration of a first course of bortezomib 1 mg/m2, the patient developed rapidly-progressive numbness, pain and muscle weakness in the bilateral upper and lower limbs. Following gancyclovir treatment of subsequent cytomegalovirus viremia, the patient went on to receive a course of EPOCH (etoposide 50 mg/m2/day on days 1–4, vincristine 0.4 mg/m2/day on days 1–4, doxorubicin 10 mg/m2/day on days 1–4, cyclophosphamide 750 mg/m2/day on day 6, and prednisolone 60 mg/m2/day on days 1–6). Shortly thereafter, the patient developed bilateral Aspergillus pneumonia. Despite treatment with appropriate antifungal agents, the patient died from respiratory failure due to bilateral diffuse alveolar damage of the lungs and without recovery of severe sensory and motor neuropathy prior to her death. Post mortem examination revealed spongy degeneration of the dorsal column from the medulla oblongata to the cervical spinal cord. Bortezomib-associated peripheral neuropathy in patients with multiple myeloma has been commonly reported but appears to resolve in a majority of these patients after dose reduction or discontinuation. We believe this to be the first report of spinal cord abnormalities in a patient with multiple myeloma treated with bortezomib. Further investigation is required to ascertain the exact mechanism of this central neurotoxic effect and to identify appropriate neuroprotective strategies

    胃癌におけるクローディン4標的化によるシスプラチン化学療法感受性の向上

    Get PDF
    Claudins are major tight-junction proteins that mediate cellular polarity and differentiation. The present study investigated whether the 4D3 antibody to the human CLDN4 extracellular domain (that we previously established) is capable of modulating chemotherapeutic sensitivity in gastric cancer (GC). The results of the present study showed that CLDN4 was overexpressed in 137 of the 192 analyzed GC cases, and that CLDN4 expression was retained in tumors of a lower histological grade (more differentiated), and/or those that were caudal-type homeobox protein 2 (CDX2)-positive, but was reduced in more highly undifferentiated, and CDX2-negative GC cases. The study also compared the synergic effects of combining 4D3 with CDDP treatment and knocking down CLDN4 expression in MKN74 and TMK-1 human GC cells. Co-treatment with 4D3 increased anti-tumor effects of CDDP, whereas CLDN4 knockdown did not. In the TMK-1 cells, non-tight junction CLDN4 associated with integrin β1, increasing stem cell-associated proteins via FAK-c-SRC signals. The anti-tumoral effect of CDDP and 4D3 was examined in a nude mouse subcutaneous tumor model. In the two GC cell lines, concurrent treatment with 4D3 and CDDP synergistically inhibited cell proliferation and increased tumor necrosis and apoptosis to a greater degree than CDDP treatment alone. These findings suggest that 4D3 might increase chemotherapeutic sensitivity by evoking structural disintegration of tight-junction CLDN4 expressed in gastric cancer.博士(医学)・甲第713号・令和元年6月26日Copyright: Nishiguchi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0 https://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Prognostic Significance of C-reactive Protein-to-prealbumin Ratio in Patients with Esophageal Cancer

    Get PDF
    Background: The prognostic value of combination of C-reactive protein and prealbumin (CRP/PAlb) in esophageal cancer remains unclear. Methods: We enrolled 167 esophageal cancer patients who underwent curative esophagectomy. Univariate and multivariate analyses were performed to determine the prognostic significance of various markers, including CRP-to-albumin (CRP/Alb) ratio, modified Glasgow prognostic score, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and prognostic nutritional index. Results: Receiver operating characteristic analysis revealed the optimal cut-off value of each inflammatory factor, and CRP/PAlb ratio had the greatest discriminative power in predicting recurrence-free survival (RFS) among the examined measures (AUC 0.668). The 5-year overall survival and RFS rates were significantly lower in patients with high CRP/PAlb ratio than in those with low CRP/PAlb ratio (P < 0.001, P = 0.001, respectively). In the univariate analysis, RFS was significantly worse in patients with low BMI, T2 or deeper tumor invasion, positive lymph node metastasis, positive venous invasion, high CRP/PAlb ratio, high CRP/Alb ratio, high NLR, and high LMR. Multivariate analysis revealed that CRP/PAlb, but not CRP/Alb, was an independent prognostic factor along with lymph node metastasis. Conclusion: CRP/PAlb ratio was useful for predicting the prognosis of esophageal cancer patients

    Ultrasensitive detection of SARS-CoV-2 nucleocapsid protein using large gold nanoparticle-enhanced surface plasmon resonance

    Get PDF
    The COVID-19 pandemic has created urgent demand for rapid detection of the SARS-CoV-2 coronavirus. Herein, we report highly sensitive detection of SARS-CoV-2 nucleocapsid protein (N protein) using nanoparticle-enhanced surface plasmon resonance (SPR) techniques. A crucial plasmonic role in significantly enhancing the limit of detection (LOD) is revealed for exceptionally large gold nanoparticles (AuNPs) with diameters of hundreds of nm. SPR enhanced by these large nanoparticles lowered the LOD of SARS-CoV-2 N protein to 85 fM, resulting in the highest SPR detection sensitivity ever obtained for SARS-CoV-2 N protein

    Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography

    Get PDF
    A set of fully automated algorithms that is specialized for analyzing a three-dimensional optical coherence tomography (OCT) volume of human skin is reported. The algorithm set first determines the skin surface of the OCT volume, and a depth-oriented algorithm provides the mean epidermal thickness, distribution map of the epidermis, and a segmented volume of the epidermis. Subsequently, an en face shadowgram is produced by an algorithm to visualize the infundibula in the skin with high contrast. The population and occupation ratio of the infundibula are provided by a histogram-based thresholding algorithm and a distance mapping algorithm. En face OCT slices at constant depths from the sample surface are extracted, and the histogram-based thresholding algorithm is again applied to these slices, yielding a three-dimensional segmented volume of the infundibula. The dermal attenuation coefficient is also calculated from the OCT volume in order to evaluate the skin texture. The algorithm set examines swept-source OCT volumes of the skins of several volunteers, and the results show the high stability, portability and reproducibility of the algorithm.This paper was published in Optics Express and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law

    Signal regulatory protein alpha blockade potentiates tumoricidal effects of macrophages on gastroenterological neoplastic cells in syngeneic immunocompetent mice

    Get PDF
    Aim: Immunotherapies blocking the CD47-SIRP alpha pathway by targeting CD47 enhance macrophage phagocytosis of neoplastic cells in mouse models. As SIRP alpha exhibits relatively restricted tissue expression, SIRP alpha antagonists may be better tolerated than agents targeting CD47, which is ubiquitously expressed in many tissues. Here, we investigated the therapeutic impact of monoclonal antibodies (mAbs) against CD47 and/or SIRP alpha on gastroenterological tumors in syngeneic immunocompetent mouse models.Methods: We used in vitro and in vivo phagocytosis assays in C57B1J6J (B6) mice to investigate anti-CD47/SIRP alpha mAb effects on Hepal-6 and CMT93 originating from B6 mice. The influence of these mAbs on macrophage transmigration was also assessed. To investigate anti-SIRP alpha mAb therapy-induced inhibitory effects on sporadic colon cancer growth, we used a CDX2P9.5-NLS Cre:APC7FLOX (CPC-APC) mouse model.Results: Systemic anti-SIRP alpha mAb administration significantly increased Hepal-6 and CMT93 cell susceptibility to macrophage phagocytosis, both in vitro and in vivo. Conversely, similarly administered anti-CD47 mAb did not promote macrophage phagocytosis of target cells, whereas cells incubated with anti-CD47 mAb prior to inoculation were more susceptible to macrophage phagocytosis. In vitro cell migration assays revealed that binding with anti-CD47 mAb inhibited macrophage transmigration. Anti-SIRP alpha mAb treatment inhibited tumor progression in CPC-APC mice and significantly improved overall survival. Anti-CD47 mAb administration in vivo eliminated the phagocytosis-promoting CD47 blockade effect, probably by inhibiting macrophage transmigration/chemotaxis. In contrast, anti-SIRP alpha mAb exhibited enhanced macrophage phagocytic activity and marked anti-tumor effects against gastroenterological malignancies.Conclusion: SIRP alpha mAb augmentation of macrophage phagocytic activity may represent an effective treatment strategy for human gastrointestinal tumors.</p

    Interferon-α/β and Anti-Fibroblast Growth Factor Receptor 1 Monoclonal Antibody Suppress Hepatic Cancer Cells In Vitro and In Vivo

    Get PDF
    Hepatocellular carcinoma (HCC) is the most commonly occurring primary liver cancer and ranks as the fifth most frequently occurring cancer, overall, and the third leading cause of cancer deaths, worldwide. At present, effective therapeutic options available for HCC are limited; consequently, the prognosis for these patients is poor. Our aim in the present study was to identify a novel target for antibody therapy against HCC..Our results suggest that the combined use of an anti-FGFR1 antibody and interferon-α/β is a promising approach to the treatment of HCC

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore