12 research outputs found

    Real-time Parameters Identification of Lithium-ion Batteries Model to Improve the Hierarchical Model Predictive Control of Building MicroGrids

    Get PDF
    Energy storage systems are key elements for enabling the design of MicroGrids in buildings, specially to deal with stochastic renewable energy resources and to promote peak shifting. However, inaccuracies in the batteries' mathematical models due to temperature and ageing effects can reduce the performance of a MicroGrid system. To tackle these uncertainties, this article presents a two-level hierarchical model predictive controller empowered with a data-driven algorithm for real-time model identification of Lithium-ion batteries. The objective is to enhance their state of charge estimation and to make their maximum use without damaging them. The results demonstrate that it improves up to three times the accuracy of state-of-charge estimation and increases about 3% the annual building MicroGrid selfconsumption rate. Furthermore, the division of the building MicroGrid energy management system into two hierarchical levels soften the drawbacks arise from the inaccuracies of day-ahead data prediction while reducing the computational cost. The proposed architecture guarantees higher energetic autonomy indexes than a conventional rule-based controller in all scenarios under study

    A review of hierarchical control for building microgrids

    Get PDF
    Building microgrids have emerged as an advantageous alternative for tackling environmental issues while enhancing the electricity distribution system. However, uncertainties in power generation, electricity prices and power consumption, along with stringent requirements concerning power quality restrain the wider development of building microgrids. This is due to the complexity of designing a reliable and robust energy management system. Within this context, hierarchical control has proved suitable for handling different requirements simultaneously so that it can satisfactorily adapt to building environments. In this paper, a comprehensive literature review of the main hierarchical control algorithms for building microgrids is discussed and compared, emphasising their most important strengths and weaknesses. Accordingly, a detailed explanation of the primary, secondary and tertiary levels is presented, highlighting the role of each control layer in adapting building microgrids to current and future electrical grid structures. Finally, some insights for forthcoming building prosumers are outlined, identifying certain barriers when dealing with building microgrid communities

    Hierarchical Coordination of a Vehicle-to-Grid System to Improve Self-consumption in Building MicroGrids

    Get PDF

    Identification en temps réel des paramètres des batteries pour améliorer le contrôle par modèle prédictif des micro-réseaux dédiés aux bâtiments

    Get PDF
    Les systèmes de stockage sont des éléments clefs pour permettre la conception de micro-réseaux dédiés aux bâtiments. Cependant, les imprécisions des modèles mathématiques des batteries, dû aux effets de la température et de leur vieillissement peuvent réduire les performances d’un système micro-réseaux. Cet article présente un contrôleur par modèle prédictif doté d'un algorithme d'identification en temps réel des modèles des batteries pour mieux estimer leur état de charge afin d’exploiter au maximum les batteries sans les endommager. Les résultats démontrent que l'algorithme proposé associé au nouveau modèle pour l’estimation de l’état de charge des batteries est capable d’améliorer jusqu’à trois fois la précision des modèles de l’estimation de l’état de charge des batteries Li-ion, et d’augmenter jusqu’à 3% l’indice d’autoconsommation annuel d’un micro-réseau dédié aux bâtiments

    Hierarchical Model Predictive Control to Coordinate a Vehicle-to-Grid System Coupled to Building Microgrids

    Get PDF
    Aiming to take full advantage of Electric Vehicles' (EVs) batteries, this paper proposes a two-level hierarchical model predictive controller coupled with an innovative charging-discharging scheduler for EVs in Building Microgrids (BMGs). This paper provides a complete framework for the design of this control structure and analyses its performance regarding the state of charge of the EVs at departure time, the self-consumption rate, and the coverage rate, considering a residential BMG equipped with photovoltaic panels and static Li-ion batteries. The results and performance of the proposed control architecture are compared to two other solutions: a hierarchical predictive controller with no scheduler and a rule-based algorithm. A technological and economical study is also performed considering variables such as the dimension of the EV's park, the price of energy, the cost of maintenance, the possibility to discharge or not into the grid, and the execution time of the control architecture. The simulation results conducted in MATLAB Simulink demonstrated that the proposed control structure ensures the full charging of all vehicles at departure time while also improving the self-consumption rate of the BMG with a relatively low stress on the needed computation capacities, even when considering a large fleet of vehicles

    Autonomous observer of hydrogen storage to enhance a model predictive control structure for building microgrids

    Get PDF
    Hydrogen energy storage has emerged as a promising technology to improve the integration of renewable energy sources in building microgrids. However, inaccuracies in the modelling of fuel cells and electrolysers reduce the performance of building microgrids' energy management system. To improve the flexibility of building microgrids, this paper proposes to associate a two-level hierarchical model predictive controller empowered with an Autonomous Observer of Hydrogen Storage (AOHS). This novel observer evaluates the hydrogen production and consumption rates, storing little past data and needing no tuning of the parameters. Relying only on instantaneous data measurement, the algorithm can estimate the tank's level of hydrogen with an average relative error inferior to 2 %, even under measurement noise. A case-study based on a building microgrid currently under construction serves as the basis for all simulations. The performance of the AOHS is evaluated by comparing the self-consumption rates of the case-study when governed by two-level energy management system: one level using a fixed parameters model and the other one equipped with the proposed AOHS algorithm. Results show that the microgrid associated to the AOHS has better self-consumption compared to the microgrid with fixed parameters, as well as a better robustness regarding the measurement noise and modelling error. Furthermore, this algorithm demonstrates a planning function as it facilitates the energy planning from the aggregator's point of view and the external grid management

    Commande hiérarchique pour les micro-réseaux dédiés aux bâtiments

    No full text
    Representing more than one-third of global electricity consumption, buildings undergo the most important sector capable of reducing greenhouse gas emissions and promote the share of Renewable Energy Sources (RES). The integrated RES and electric energy storage system in buildings can assist the energy transition toward a low-carbon electricity system while allowing end-energy consumers to benefit from clean energy. Despite its valuable advantages, this innovative distributed Building Microgrids (BM) topology requires significant changes in the current electric grid, which is highly dependent on grid energy policies and technology breakthroughs.The complexity of designing a robust Energy Management System (EMS) capable of managing all electric components inside the microgrid efficiently without harming the main grid stability is one of the greatest challenge in the development of BM. To mitigate the harmful effects of unpredictable grid actors, the concept of self-consumption has been increasingly adopted. Nonetheless, further technical-economic analysis is needed to optimally manage the energy storage systems to attain higher marks of self-consumption.Faceing these issues, the purpose of this doctoral thesis is to propose a complete framework for designing a building EMS for microgrids installed in buildings capable of maximising the self-consumption rate at minimum operating cost. Among all possible control architectures, the hierarchical structure has proved effective to handle conflicting goals that are not in the same timeframe. Hence, a Hierarchical Model Predictive (HMPC) control structure was adopted to address the uncertainties in the power imbalance as well as the trade-off between costs and compliance with the French grid code.Considering that buildings are not homogeneous and require solutions tailored to their specific conditions, the proposed controller was enhanced by two data-driven modules. The first data-driven algorithm is to handle inaccuracies in HMPC internal models. Without needing to tune any parameter, this algorithm can enhance the accuracy of the battery model up to three times and improve up to ten times the precision of the hydrogen storage model. This makes the building EMS more flexible and less dependent on pre-modelling steps.The second data-oriented algorithm determines autonomously adequate parameters to HMPC to relieve the trade-off between economic and energy aspects. Relying only on power imbalance data analysis and local measurements, the proposed hierarchical controller determines which energy storage device must run daily based on the estimation of the annual self-consumption rate and the annual microgrid operating cost. These estimations decrease microgrid expenditure because it avoids grid penalties regarding the requirements of annual self-consumption and reduces the degradation and maintenance of energy storage devices.The proposed EMS also demonstrated being capable of exploiting the potentials of shifting in time the charging of batteries of plug-in electric vehicles. The simulation confirmed that the proposed controller preferably charges electric vehicles’ batteries at periods of energy surplus and discharges them during periods of energy deficit, leading the building microgrid to reduce grid energy exchange. The results also showed that electric vehicle batteries' contribution depends on the size of the vehicle parking, their arrival and departure time, and the building’s net power imbalance profile. In conclusion, through simulations using the dataset of both public and residential buildings, the proposed hierarchical building EMS proved its effectiveness to handle different kinds of energy storage devices and foster the development of forthcoming building microgrids.Représentant plus d'un tiers de la consommation mondiale d'électricité, les bâtiments sont le secteur énergétique majeur pour promouvoir l’usage des énergies renouvelables. L'installation à la fois de sources d’énergie rénouvelable et d'un système de stockage d'énergie électrique dans les bâtiments peut favoriser la transition énergétique vers un système électrique à faible émission de carbone, tout en permettant aux consommateurs d'énergie finaux de bénéficier d'une énergie propre. Malgré tous ces avantages, cette topologie innovante et distribuée d’un Micro-réseau dédié au Bâtiment (MB)nécessite des changements importants dans le réseau actuel, qui dépend des politiques énergétiques et d’avancement technologiques.La conception d'un Système de Gestion de l'Energie (EMS) capable de gérer efficacement les composants électriques du micro-réseau sans menacer la stabilité du réseau principal est un obstacle au développement des MB. Pour atténuer les effets néfastes introduits par des acteurs d’énergie imprévisibles, le concept d'autoconsommation est de plus en plus adopté. Néanmoins, une analyse technico-économique plus approfondie est nécessaire pour piloter d’une manière optimaledes systèmes de stockage d'énergie afin d’atteindre des indices d'autoconsommation plus élevés.Face à ces enjeux, le but de ce doctorat est de proposer un EMS pour les micro-réseaux installés dans les bâtiments afin de maximiser leur taux d’autoconsommation à un coût d’exploitation minimum. Parmi les architectures de contrôle, la structure hiérarchique s'est avérée efficace pour gérer des objectifs contradictoires qui ne sont pas dans la même échelle de temps. Ainsi, une structure de contrôle Hiérarchique à Modèle Prédictif (HMPC) a été adoptée pour remédier aux incertitudes liées aux déséquilibres de puissance ainsi qu’établir un compromis entre la réduction du coût de fonctionnement et le respect du code de l’énergie français.Considérant que les bâtiments ne sont pas homogènes et nécessitent des solutions adaptées à leur besoin, le contrôleur proposé a été couplé à deux modules fonctionnant à base d’analyse de données. Le premier algorithme consiste à gérer les inexactitudes dans les modèles internes de l’HMPC. Sans avoir besoin de régler aucun paramètre, cet algorithme améliore la précision du modèle de batteries jusqu'à trois fois et augmente jusqu'à dix fois la précision du modèle de stockage d'hydrogène, réduisant ainsi la dépendance de l’EMS aux étapes de modélisation. Le deuxième algorithme détermine de manière autonome les paramètres de l’HMPC et facilite le compromis entre les aspects économiques et énergétiques. S'appuyant uniquement sur l'analyse des données de déséquilibre de puissance et des mesures, le contrôleur hiérarchique spécifie quel dispositif de stockage d'énergie doit fonctionner quotidiennement en fonction de l'estimation du taux d'autoconsommation et du coût de fonctionnement du micro-réseau. Ces estimations diminuent les dépenses annuelles du micro-réseau en évitant la pénalisation en ce qui concerne les exigences d'autoconsommation et en réduisant la dégradation et l'entretien des systèmes de stockage d'énergie.L’EMS proposé s'est également révélé capable de charger de préférence les batteries des véhicules électriques en période de surplus d’énergie et les décharger pendant les périodes de déficit pour réduire les échanges d’énergie avec le réseau principal. Les résultats ont aussi montré que la contribution des batteries de véhicules électriques dépend de la taille du parc de véhicules, de leur temps de connexion et du profil de déséquilibre de puissance. En conclusion, à travers les simulations utilisant le dimensionnement réel d'un bâtiment public et résidentiel, l’EMS hiérarchique s'est avéré efficace pour gérer de nombreux dispositifs de stockage d'énergie et contribuer à l’essor de micro-réseaux dédiés aux bâtiments à l’avenir

    Commande hiérarchique pour les micro-réseaux dédiés aux bâtiments

    No full text
    Representing more than one-third of global electricity consumption, buildings undergo the most important sector capable of reducing greenhouse gas emissions and promote the share of Renewable Energy Sources (RES). The integrated RES and electric energy storage system in buildings can assist the energy transition toward a low-carbon electricity system while allowing end-energy consumers to benefit from clean energy. Despite its valuable advantages, this innovative distributed Building Microgrids (BM) topology requires significant changes in the current electric grid, which is highly dependent on grid energy policies and technology breakthroughs.The complexity of designing a robust Energy Management System (EMS) capable of managing all electric components inside the microgrid efficiently without harming the main grid stability is one of the greatest challenge in the development of BM. To mitigate the harmful effects of unpredictable grid actors, the concept of self-consumption has been increasingly adopted. Nonetheless, further technical-economic analysis is needed to optimally manage the energy storage systems to attain higher marks of self-consumption.Faceing these issues, the purpose of this doctoral thesis is to propose a complete framework for designing a building EMS for microgrids installed in buildings capable of maximising the self-consumption rate at minimum operating cost. Among all possible control architectures, the hierarchical structure has proved effective to handle conflicting goals that are not in the same timeframe. Hence, a Hierarchical Model Predictive (HMPC) control structure was adopted to address the uncertainties in the power imbalance as well as the trade-off between costs and compliance with the French grid code.Considering that buildings are not homogeneous and require solutions tailored to their specific conditions, the proposed controller was enhanced by two data-driven modules. The first data-driven algorithm is to handle inaccuracies in HMPC internal models. Without needing to tune any parameter, this algorithm can enhance the accuracy of the battery model up to three times and improve up to ten times the precision of the hydrogen storage model. This makes the building EMS more flexible and less dependent on pre-modelling steps.The second data-oriented algorithm determines autonomously adequate parameters to HMPC to relieve the trade-off between economic and energy aspects. Relying only on power imbalance data analysis and local measurements, the proposed hierarchical controller determines which energy storage device must run daily based on the estimation of the annual self-consumption rate and the annual microgrid operating cost. These estimations decrease microgrid expenditure because it avoids grid penalties regarding the requirements of annual self-consumption and reduces the degradation and maintenance of energy storage devices.The proposed EMS also demonstrated being capable of exploiting the potentials of shifting in time the charging of batteries of plug-in electric vehicles. The simulation confirmed that the proposed controller preferably charges electric vehicles’ batteries at periods of energy surplus and discharges them during periods of energy deficit, leading the building microgrid to reduce grid energy exchange. The results also showed that electric vehicle batteries' contribution depends on the size of the vehicle parking, their arrival and departure time, and the building’s net power imbalance profile. In conclusion, through simulations using the dataset of both public and residential buildings, the proposed hierarchical building EMS proved its effectiveness to handle different kinds of energy storage devices and foster the development of forthcoming building microgrids.Représentant plus d'un tiers de la consommation mondiale d'électricité, les bâtiments sont le secteur énergétique majeur pour promouvoir l’usage des énergies renouvelables. L'installation à la fois de sources d’énergie rénouvelable et d'un système de stockage d'énergie électrique dans les bâtiments peut favoriser la transition énergétique vers un système électrique à faible émission de carbone, tout en permettant aux consommateurs d'énergie finaux de bénéficier d'une énergie propre. Malgré tous ces avantages, cette topologie innovante et distribuée d’un Micro-réseau dédié au Bâtiment (MB)nécessite des changements importants dans le réseau actuel, qui dépend des politiques énergétiques et d’avancement technologiques.La conception d'un Système de Gestion de l'Energie (EMS) capable de gérer efficacement les composants électriques du micro-réseau sans menacer la stabilité du réseau principal est un obstacle au développement des MB. Pour atténuer les effets néfastes introduits par des acteurs d’énergie imprévisibles, le concept d'autoconsommation est de plus en plus adopté. Néanmoins, une analyse technico-économique plus approfondie est nécessaire pour piloter d’une manière optimaledes systèmes de stockage d'énergie afin d’atteindre des indices d'autoconsommation plus élevés.Face à ces enjeux, le but de ce doctorat est de proposer un EMS pour les micro-réseaux installés dans les bâtiments afin de maximiser leur taux d’autoconsommation à un coût d’exploitation minimum. Parmi les architectures de contrôle, la structure hiérarchique s'est avérée efficace pour gérer des objectifs contradictoires qui ne sont pas dans la même échelle de temps. Ainsi, une structure de contrôle Hiérarchique à Modèle Prédictif (HMPC) a été adoptée pour remédier aux incertitudes liées aux déséquilibres de puissance ainsi qu’établir un compromis entre la réduction du coût de fonctionnement et le respect du code de l’énergie français.Considérant que les bâtiments ne sont pas homogènes et nécessitent des solutions adaptées à leur besoin, le contrôleur proposé a été couplé à deux modules fonctionnant à base d’analyse de données. Le premier algorithme consiste à gérer les inexactitudes dans les modèles internes de l’HMPC. Sans avoir besoin de régler aucun paramètre, cet algorithme améliore la précision du modèle de batteries jusqu'à trois fois et augmente jusqu'à dix fois la précision du modèle de stockage d'hydrogène, réduisant ainsi la dépendance de l’EMS aux étapes de modélisation. Le deuxième algorithme détermine de manière autonome les paramètres de l’HMPC et facilite le compromis entre les aspects économiques et énergétiques. S'appuyant uniquement sur l'analyse des données de déséquilibre de puissance et des mesures, le contrôleur hiérarchique spécifie quel dispositif de stockage d'énergie doit fonctionner quotidiennement en fonction de l'estimation du taux d'autoconsommation et du coût de fonctionnement du micro-réseau. Ces estimations diminuent les dépenses annuelles du micro-réseau en évitant la pénalisation en ce qui concerne les exigences d'autoconsommation et en réduisant la dégradation et l'entretien des systèmes de stockage d'énergie.L’EMS proposé s'est également révélé capable de charger de préférence les batteries des véhicules électriques en période de surplus d’énergie et les décharger pendant les périodes de déficit pour réduire les échanges d’énergie avec le réseau principal. Les résultats ont aussi montré que la contribution des batteries de véhicules électriques dépend de la taille du parc de véhicules, de leur temps de connexion et du profil de déséquilibre de puissance. En conclusion, à travers les simulations utilisant le dimensionnement réel d'un bâtiment public et résidentiel, l’EMS hiérarchique s'est avéré efficace pour gérer de nombreux dispositifs de stockage d'énergie et contribuer à l’essor de micro-réseaux dédiés aux bâtiments à l’avenir

    Commande hiérarchique pour les micro-réseaux dédiés aux bâtiments

    No full text
    Représentant plus d'un tiers de la consommation mondiale d'électricité, les bâtiments sont le secteur énergétique majeur pour promouvoir l’usage des énergies renouvelables. L'installation à la fois de sources d’énergie rénouvelable et d'un système de stockage d'énergie électrique dans les bâtiments peut favoriser la transition énergétique vers un système électrique à faible émission de carbone, tout en permettant aux consommateurs d'énergie finaux de bénéficier d'une énergie propre. Malgré tous ces avantages, cette topologie innovante et distribuée d’un Micro-réseau dédié au Bâtiment (MB)nécessite des changements importants dans le réseau actuel, qui dépend des politiques énergétiques et d’avancement technologiques.La conception d'un Système de Gestion de l'Energie (EMS) capable de gérer efficacement les composants électriques du micro-réseau sans menacer la stabilité du réseau principal est un obstacle au développement des MB. Pour atténuer les effets néfastes introduits par des acteurs d’énergie imprévisibles, le concept d'autoconsommation est de plus en plus adopté. Néanmoins, une analyse technico-économique plus approfondie est nécessaire pour piloter d’une manière optimaledes systèmes de stockage d'énergie afin d’atteindre des indices d'autoconsommation plus élevés.Face à ces enjeux, le but de ce doctorat est de proposer un EMS pour les micro-réseaux installés dans les bâtiments afin de maximiser leur taux d’autoconsommation à un coût d’exploitation minimum. Parmi les architectures de contrôle, la structure hiérarchique s'est avérée efficace pour gérer des objectifs contradictoires qui ne sont pas dans la même échelle de temps. Ainsi, une structure de contrôle Hiérarchique à Modèle Prédictif (HMPC) a été adoptée pour remédier aux incertitudes liées aux déséquilibres de puissance ainsi qu’établir un compromis entre la réduction du coût de fonctionnement et le respect du code de l’énergie français.Considérant que les bâtiments ne sont pas homogènes et nécessitent des solutions adaptées à leur besoin, le contrôleur proposé a été couplé à deux modules fonctionnant à base d’analyse de données. Le premier algorithme consiste à gérer les inexactitudes dans les modèles internes de l’HMPC. Sans avoir besoin de régler aucun paramètre, cet algorithme améliore la précision du modèle de batteries jusqu'à trois fois et augmente jusqu'à dix fois la précision du modèle de stockage d'hydrogène, réduisant ainsi la dépendance de l’EMS aux étapes de modélisation. Le deuxième algorithme détermine de manière autonome les paramètres de l’HMPC et facilite le compromis entre les aspects économiques et énergétiques. S'appuyant uniquement sur l'analyse des données de déséquilibre de puissance et des mesures, le contrôleur hiérarchique spécifie quel dispositif de stockage d'énergie doit fonctionner quotidiennement en fonction de l'estimation du taux d'autoconsommation et du coût de fonctionnement du micro-réseau. Ces estimations diminuent les dépenses annuelles du micro-réseau en évitant la pénalisation en ce qui concerne les exigences d'autoconsommation et en réduisant la dégradation et l'entretien des systèmes de stockage d'énergie.L’EMS proposé s'est également révélé capable de charger de préférence les batteries des véhicules électriques en période de surplus d’énergie et les décharger pendant les périodes de déficit pour réduire les échanges d’énergie avec le réseau principal. Les résultats ont aussi montré que la contribution des batteries de véhicules électriques dépend de la taille du parc de véhicules, de leur temps de connexion et du profil de déséquilibre de puissance. En conclusion, à travers les simulations utilisant le dimensionnement réel d'un bâtiment public et résidentiel, l’EMS hiérarchique s'est avéré efficace pour gérer de nombreux dispositifs de stockage d'énergie et contribuer à l’essor de micro-réseaux dédiés aux bâtiments à l’avenir.Representing more than one-third of global electricity consumption, buildings undergo the most important sector capable of reducing greenhouse gas emissions and promote the share of Renewable Energy Sources (RES). The integrated RES and electric energy storage system in buildings can assist the energy transition toward a low-carbon electricity system while allowing end-energy consumers to benefit from clean energy. Despite its valuable advantages, this innovative distributed Building Microgrids (BM) topology requires significant changes in the current electric grid, which is highly dependent on grid energy policies and technology breakthroughs.The complexity of designing a robust Energy Management System (EMS) capable of managing all electric components inside the microgrid efficiently without harming the main grid stability is one of the greatest challenge in the development of BM. To mitigate the harmful effects of unpredictable grid actors, the concept of self-consumption has been increasingly adopted. Nonetheless, further technical-economic analysis is needed to optimally manage the energy storage systems to attain higher marks of self-consumption.Faceing these issues, the purpose of this doctoral thesis is to propose a complete framework for designing a building EMS for microgrids installed in buildings capable of maximising the self-consumption rate at minimum operating cost. Among all possible control architectures, the hierarchical structure has proved effective to handle conflicting goals that are not in the same timeframe. Hence, a Hierarchical Model Predictive (HMPC) control structure was adopted to address the uncertainties in the power imbalance as well as the trade-off between costs and compliance with the French grid code.Considering that buildings are not homogeneous and require solutions tailored to their specific conditions, the proposed controller was enhanced by two data-driven modules. The first data-driven algorithm is to handle inaccuracies in HMPC internal models. Without needing to tune any parameter, this algorithm can enhance the accuracy of the battery model up to three times and improve up to ten times the precision of the hydrogen storage model. This makes the building EMS more flexible and less dependent on pre-modelling steps.The second data-oriented algorithm determines autonomously adequate parameters to HMPC to relieve the trade-off between economic and energy aspects. Relying only on power imbalance data analysis and local measurements, the proposed hierarchical controller determines which energy storage device must run daily based on the estimation of the annual self-consumption rate and the annual microgrid operating cost. These estimations decrease microgrid expenditure because it avoids grid penalties regarding the requirements of annual self-consumption and reduces the degradation and maintenance of energy storage devices.The proposed EMS also demonstrated being capable of exploiting the potentials of shifting in time the charging of batteries of plug-in electric vehicles. The simulation confirmed that the proposed controller preferably charges electric vehicles’ batteries at periods of energy surplus and discharges them during periods of energy deficit, leading the building microgrid to reduce grid energy exchange. The results also showed that electric vehicle batteries' contribution depends on the size of the vehicle parking, their arrival and departure time, and the building’s net power imbalance profile. In conclusion, through simulations using the dataset of both public and residential buildings, the proposed hierarchical building EMS proved its effectiveness to handle different kinds of energy storage devices and foster the development of forthcoming building microgrids
    corecore