1,062 research outputs found
Magnetic Field Strength in the Upper Solar Corona Using White-light Shock Structures Surrounding Coronal Mass Ejections
To measure the magnetic field strength in the solar corona, we examined 10
fast (> 1000 km/s) limb CMEs which show clear shock structures in SOHO/LASCO
images. By applying piston-shock relationship to the observed CME's standoff
distance and electron density compression ratio, we estimated the Mach number,
Alfven speed, and magnetic field strength in the height range 3 to 15 solar
radii (Rs). Main results from this study are: (1) the standoff distance
observed in solar corona is consistent with those from a magnetohydrodynamic
(MHD) model and near-Earth observations; (2) the Mach number as a shock
strength is in the range 1.49 to 3.43 from the standoff distance ratio, but
when we use the density compression ratio, the Mach number is in the range 1.47
to 1.90, implying that the measured density compression ratio is likely to be
underestimated due to observational limits; (3) the Alfven speed ranges from
259 to 982 km/s and the magnetic field strength is in the range 6 to 105 mG
when the standoff distance is used; (4) if we multiply the density compression
ratio by a factor of 2, the Alfven speeds and the magnetic field strengths are
consistent in both methods; (5) the magnetic field strengths derived from the
shock parameters are similar to those of empirical models and previous
estimates.Comment: Accepted for publication in ApJ, 11 Figures, 1 Tabl
Prediction Space Weather Using an Asymmetric Cone Model for Halo CMEs
Halo coronal mass ejections (HCMEs) are responsible of the most severe
geomagnetic storms. A prediction of their geoeffectiveness and travel time to
Earth's vicinity is crucial to forecast space weather.
Unfortunately coronagraphic observations are subjected to projection effects
and do not provide true characteristics of CMEs. Recently, Michalek (2006, {\it
Solar Phys.}, {\bf237}, 101) developed an asymmetric cone model to obtain the
space speed, width and source location of HCMEs. We applied this technique to
obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO
experiment during a period from the beginning of 2001 until the end of 2002
(solar cycle 23). These parameters were applied for the space weather forecast.
Our study determined that the space speeds are strongly correlated with the
travel times of HCMEs within Earth's vicinity and with the magnitudes related
to geomagnetic disturbances
Width of Radio-Loud and Radio-Quiet CMEs
In the present paper we report on the difference in angular sizes between
radio-loud and radio-quiet CMEs. For this purpose we compiled these two samples
of events using Wind/WAVES and SOHO/LASCO observations obtained during
1996-2005. It is shown that the radio-loud CMEs are almost two times wider than
the radio-quiet CMEs (considering expanding parts of CMEs). Furthermore we show
that the radio-quiet CMEs have a narrow expanding bright part with a large
extended diffusive structure. These results were obtained by measuring the CME
widths in three different ways.Comment: Solar Physic, in pres
Space Weather Application Using Projected Velocity Asymmetry of Halo CMEs
Halo coronal mass ejections (HCMEs) originating from regions close to the
center of the Sun are likely to be responsible for severe geomagnetic storms.
It is important to predict geo-effectiveness of HCMEs using observations when
they are still near the Sun. Unfortunately, coronagraphic observations do not
provide true speeds of CMEs due to the projection effects. In the present
paper, we present a new technique allowing estimate the space speed and
approximate source location using projected speeds measured at different
position angles for a given HCME (velocity asymmetry). We apply this technique
to HCMEs observed during 2001-2002 and find that the improved speeds are better
correlated with the travel times of HCMEs to Earth and with the magnitudes
ensuing geomagnetic storms.Comment: accepted for [publication in Solar Physic
Participatory Budgeting and Local Government in a Vertical Society: A Japanese Story
This article examines a case of participatory budgeting in Japanese local government. The article demonstrates how cultural values interact with stages of budgeting (in our case, the co-planning or consultation phase of budgeting). We find three key stakeholders – councillors, administrators and citizens – have varying degree of participation in the budget process. While direct citizen participation has been limited and challenging, we find that local associations and councillors work as lobbyists to influence the budget less publicly. The budget desk led by the mayor plays the dominant role. This article contributes to the broader debate on local government reforms and their translation into varied contexts by problematising such a linear adoption of knowledge from a cultural perspective
Magnetic Flux of EUV Arcade and Dimming Regions as a Relevant Parameter for Early Diagnostics of Solar Eruptions - Sources of Non-Recurrent Geomagnetic Storms and Forbush Decreases
This study aims at the early diagnostics of geoeffectiveness of coronal mass
ejections (CMEs) from quantitative parameters of the accompanying EUV dimming
and arcade events. We study events of the 23th solar cycle, in which major
non-recurrent geomagnetic storms (GMS) with Dst <-100 nT are sufficiently
reliably identified with their solar sources in the central part of the disk.
Using the SOHO/EIT 195 A images and MDI magnetograms, we select significant
dimming and arcade areas and calculate summarized unsigned magnetic fluxes in
these regions at the photospheric level. The high relevance of this eruption
parameter is displayed by its pronounced correlation with the Forbush decrease
(FD) magnitude, which, unlike GMSs, does not depend on the sign of the Bz
component but is determined by global characteristics of ICMEs. Correlations
with the same magnetic flux in the solar source region are found for the GMS
intensity (at the first step, without taking into account factors determining
the Bz component near the Earth), as well as for the temporal intervals between
the solar eruptions and the GMS onset and peak times. The larger the magnetic
flux, the stronger the FD and GMS intensities are and the shorter the ICME
transit time is. The revealed correlations indicate that the main quantitative
characteristics of major non-recurrent space weather disturbances are largely
determined by measurable parameters of solar eruptions, in particular, by the
magnetic flux in dimming areas and arcades, and can be tentatively estimated in
advance with a lead time from 1 to 4 days. For GMS intensity, the revealed
dependencies allow one to estimate a possible value, which can be expected if
the Bz component is negative.Comment: 27 pages, 5 figures. Accepted for publication in Solar Physic
Development of High-Speed Fluorescent X-Ray Micro-Computed Tomography
A high-speed fluorescent x-ray CT (FXCT) system using monochromatic synchrotron x rays was developed to detect very low concentration of medium-Z elements for biomedical use. The system is equipped two types of high purity germanium detectors, and fast electronics and software. Preliminary images of a 10mm diameter plastic phantom containing channels field with iodine solutions of different concentrations showed a minimum detection level of 0.002 mg I/ml at an in-plane spatial resolution of 100µm. Furthermore, the acquisition time was reduced about 1/2 comparing to previous system. The results indicate that FXCT is a highly sensitive imaging modality capable of detecting very low concentration of iodine, and that the method has potential in biomedical applications
Coronal Shock Waves, EUV waves, and Their Relation to CMEs. I. Reconciliation of "EIT waves", Type II Radio Bursts, and Leading Edges of CMEs
We show examples of excitation of coronal waves by flare-related abrupt
eruptions of magnetic rope structures. The waves presumably rapidly steepened
into shocks and freely propagated afterwards like decelerating blast waves that
showed up as Moreton waves and EUV waves. We propose a simple quantitative
description for such shock waves to reconcile their observed propagation with
drift rates of metric type II bursts and kinematics of leading edges of coronal
mass ejections (CMEs). Taking account of different plasma density falloffs for
propagation of a wave up and along the solar surface, we demonstrate a close
correspondence between drift rates of type II bursts and speeds of EUV waves,
Moreton waves, and CMEs observed in a few known events.Comment: 30 pages, 15 figures. Solar Physics, published online. The final
publication is available at http://www.springerlink.co
Propagation of an Earth-directed coronal mass ejection in three dimensions
Solar coronal mass ejections (CMEs) are the most significant drivers of
adverse space weather at Earth, but the physics governing their propagation
through the heliosphere is not well understood. While stereoscopic imaging of
CMEs with the Solar Terrestrial Relations Observatory (STEREO) has provided
some insight into their three-dimensional (3D) propagation, the mechanisms
governing their evolution remain unclear due to difficulties in reconstructing
their true 3D structure. Here we use a new elliptical tie-pointing technique to
reconstruct a full CME front in 3D, enabling us to quantify its deflected
trajectory from high latitudes along the ecliptic, and measure its increasing
angular width and propagation from 2-46 solar radii (approximately 0.2 AU).
Beyond 7 solar radii, we show that its motion is determined by an aerodynamic
drag in the solar wind and, using our reconstruction as input for a 3D
magnetohydrodynamic simulation, we determine an accurate arrival time at the
Lagrangian L1 point near Earth.Comment: 5 figures, 2 supplementary movie
- …
