33 research outputs found

    Molecules with ALMA at Planet-forming Scales (MAPS). XIV. Revealing disk substructures in multiwavelength continuum emission

    Get PDF
    Funding: I.C. was supported by NASA through the NASA Hubble Fellowship grant HST-HF2-51405.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. A.S.B acknowledges the studentship funded by the Science and Technology Facilities Council of the United Kingdom (STFC). C.W. acknowledges financial support from the University of Leeds, STFC and UKRI (grant Nos. ST/R000549/1, ST/T000287/1, MR/T040726/1).Constraining dust properties of planet-forming disks via high-angular-resolution observations is fundamental to understanding how solids are trapped in substructures and how dust growth may be favored or accelerated therein. We use ALMA dust continuum observations of the Molecules with ALMA at Planet-forming Scales (MAPS) disks and explore a large parameter space to constrain the radial distribution of solid mass and maximum grain size in each disk, including or excluding dust scattering. In the nonscattering model, the dust surface density and maximum grain size profiles decrease from the inner disks to the outer disks, with local maxima at the bright ring locations, as expected from dust trapping models. The inferred maximum grain sizes from the inner to outer disks decrease from 1 cm to 1 mm. For IM Lup, HD 163296, and MWC 480 in the scattering model, two solutions are compatible with their observed inner disk emission: one solution corresponding to a maximum grain size of a few millimeters (similar to the nonscattering model), and the other corresponding to a size of a few hundred micrometers. Based on the estimated Toomre parameter, only IM Lup-which shows a prominent spiral morphology in millimeter dust-is found to be gravitationally unstable. The estimated maximum Stokes number in all the disks lies between 0.01 and 0.3, and the estimated turbulence parameters in the rings of AS 209 and HD 163296 are close to the threshold where dust growth is limited by turbulent fragmentation. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.Publisher PDFPeer reviewe

    Molecules with ALMA at Planet-forming Scales (MAPS). X. Studying deuteration at high angular resolution toward protoplanetary disks

    Get PDF
    Funding: J.B.B., J.H., I.C., K.R.S., and K.Z. acknowledge the support of NASA through Hubble Fellowship grants HST-HF2-51429.001-A, HST-HF2-51460.001-A, HST-HF2-51405.001-A, HST-HF2-51419.001, and HST-HF2-51401.001, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. A.S.B. acknowledges the studentship funded by the Science and Technology Facilities Council of the United Kingdom (STFC). J.D.I. acknowledges support from STFC under ST/T000287/1. C.W. acknowledges financial support from the University of Leeds, STFC, and UKRI (grant Nos. ST/R000549/1, ST/T000287/1, MR/T040726/1).Deuterium fractionation is dependent on various physical and chemical parameters. Thus, the formation location and thermal history of material in the solar system is often studied by measuring its D/H ratio. This requires knowledge about the deuteration processes operating during the planet formation era. We aim to study these processes by radially resolving the DCN/HCN (at 0″3 resolution) and N2D+/N2H+ (~0″3-0″9) column density ratios toward the five protoplanetary disks observed by the Molecules with ALMA at Planet-forming scales (MAPS) Large Program. DCN is detected in all five sources, with one newly reported detection. N2D+ is detected in four sources, two of which are newly reported detections. We derive column density profiles that allow us to study the spatial variation of the DCN/HCN and N2D+/N2H+ ratios at high resolution. DCN/HCN varies considerably for different parts of the disks, ranging from 10-3 to 10-1. In particular, the inner-disk regions generally show significantly lower HCN deuteration compared with the outer disk. In addition, our analysis confirms that two deuterium fractionation channels are active, which can alter the D/H ratio within the pool of organic molecules. N2D+ is found in the cold outer regions beyond ~50 au, with N2D+/N2H+ ranging between 10-2 and 1 across the disk sample. This is consistent with the theoretical expectation that N2H+ deuteration proceeds via the low-temperature channel only. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.Publisher PDFPeer reviewe

    Molecules with ALMA at Planet-forming Scales (MAPS). VII. Substellar O/H and C/H and superstellar C/O in planet-feeding gas

    Get PDF
    Funding: K.Z., J.B.B., I.C., J.H., and K.R.S. acknowledge support from NASA through NASA Hubble Fellowship grant Nos. HST-HF2-51401.001, HST-HF2-51429.001-A, HST-HF2-51405.001-A, HST-HF2-51460.001-A, and HST-HF2-51419.001 awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. C.W. acknowledges financial support from the University of Leeds, STFC, and UKRI (grant Nos. ST/R000549/1, ST/T000287/1, MR/T040726/1). J.D.I. acknowledges support from the Science and Technology Facilities Council of the United Kingdom (STFC) under ST/T000287/1.The elemental composition of the gas and dust in a protoplanetary disk influences the compositions of the planets that form in it. We use the Molecules with ALMA at Planet-forming Scales (MAPS) data to constrain the elemental composition of the gas at the locations of potentially forming planets. The elemental abundances are inferred by comparing source-specific gas-grain thermochemical models with variable C/O ratios and small-grain abundances from the DALI code with CO and C2H column densities derived from the high-resolution observations of the disks of AS 209, HD 163296, and MWC 480. Elevated C/O ratios (~2.0), even within the CO ice line, are necessary to match the inferred C2H column densities over most of the pebble disk. Combined with constraints on the CO abundances in these systems, this implies that both the O/H and C/H ratios in the gas are substellar by a factor of 4-10, with the O/H depleted by a factor of 20-50, resulting in the high C/O ratios. This necessitates that even within the CO ice line, most of the volatile carbon and oxygen is still trapped on grains in the midplane. Planets accreting gas in the gaps of the AS 209, HD 163296, and MWC 480 disks will thus acquire very little carbon and oxygen after reaching the pebble isolation mass. In the absence of atmosphere-enriching events, these planets would thus have a strongly substellar O/H and C/H and superstellar C/O atmospheric composition. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.Publisher PDFPeer reviewe

    Molecules with ALMA at Planet-forming Scales (MAPS). XV. Tracing protoplanetary disk structure within 20 au

    Get PDF
    Funding: J.B., J.B.B., I.C., J.H., K. R.S., and K.Z. acknowledge support by NASA through the NASA Hubble Fellowship grant Nos. HST-HF2-51427.001-A, HST-HF2- 51429.001-A, HST-HF2-51405.001-A, HST-HF2-51460.001-A, HST-HF2-51419.001, and HST-HF2-51401.001, awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555. C.W. acknowledges financial support from the University of Leeds and from the Science and Technology Facilities Council (grant Nos. ST/R000549/1 and ST/T000287/1). A.S.B acknowledges the studentship funded by the Science and Technology Facilities Council of the United Kingdom (STFC). J.D.I. acknowledges support from the Science and Technology Facilities Council of the United Kingdom (STFC) under ST/T000287/1.Constraining the distribution of gas and dust in the inner 20 au of protoplanetary disks is difficult. At the same time, this region is thought to be responsible for most planet formation, especially around the water ice line at 3–10 au. Under the assumption that the gas is in a Keplerian disk, we use the exquisite sensitivity of the Molecules with ALMA at Planet-forming Scales (MAPS) ALMA large program to construct radial surface brightness profiles with a ∼3 au effective resolution for the CO isotopologue J = 2–1 lines using the line velocity profile. IM Lup reveals a central depression in 13CO and C18O that is ascribed to a pileup of ∼500 M⊕ of dust in the inner 20 au, leading to a gas-to-dust ratio of around 10) and that the dust gap is gas-rich enough to have optically thick C18O. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.Publisher PDFPeer reviewe

    Molecules with ALMA at Planet-forming Scales (MAPS). V. CO gas distributions

    Get PDF
    Funding: K.Z., K.R.S., J.H., J.B., J.B.B., and I.C. acknowledge the support of NASA through Hubble Fellowship grants HST-HF2-51401.001, HST-HF2-51419.001, HST-HF2-51460.001-A, HST-HF2-51427.001-A, HST-HF2-51429.001-A, and HST-HF2-51405.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. C.W. acknowledges financial support from the University of Leeds and from the Science and Technology Facilities Council (grant Nos. ST/R000549/1, ST/T000287/1, and MR/T040726/1).Here we present high-resolution (15-24 au) observations of CO isotopologue lines from the Molecules with ALMA on Planet-forming Scales (MAPS) ALMA Large Program. Our analysis employs observations of the (J = 2-1) and (1-0) lines of 13CO and C18O and the (J = 1-0) line of C17O for five protoplanetary disks. We retrieve CO gas density distributions, using three independent methods: (1) a thermochemical modeling framework based on the CO data, the broadband spectral energy distribution, and the millimeter continuum emission; (2) an empirical temperature distribution based on optically thick CO lines; and (3) a direct fit to the C17O hyperfine lines. Results from these methods generally show excellent agreement. The CO gas column density profiles of the five disks show significant variations in the absolute value and the radial shape. Assuming a gas-to-dust mass ratio of 100, all five disks have a global CO-to-H2 abundance 10-100 times lower than the interstellar medium ratio. The CO gas distributions between 150 and 400 au match well with models of viscous disks, supporting the long-standing theory. CO gas gaps appear to be correlated with continuum gap locations, but some deep continuum gaps do not have corresponding CO gaps. The relative depths of CO and dust gaps are generally consistent with predictions of planet-disk interactions, but some CO gaps are 5-10 times shallower than predictions based on dust gaps. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.Publisher PDFPeer reviewe

    Molecules with ALMA at Planet-forming Scales (MAPS). IV. Emission surfaces and vertical distribution of molecules

    Get PDF
    Funding: I.C. was supported by NASA through the NASA Hubble Fellowship grant HST-HF2-51405.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. C.W. acknowledges financial support from the University of Leeds, STFC, and UKRI (grant Nos. ST/R000549/1, ST/T000287/1, MR/T040726/1).The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a unique opportunity to study the vertical distribution of gas, chemistry, and temperature in the protoplanetary disks around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. By using the asymmetry of molecular line emission relative to the disk major axis, we infer the emission height (z) above the midplane as a function of radius (r). Using this method, we measure emitting surfaces for a suite of CO isotopologues, HCN, and C2H. We find that 12CO emission traces the most elevated regions with z/r ∼< 0.3 , while emission from the less abundant 13CO and C18O probes deeper into the disk at altitudes of z/r ~< 0.2 . C2H and HCN have lower opacities and signal-to-noise ratios, making surface fitting more difficult, and could only be reliably constrained in AS 209, HD 163296, and MWC 480, with z/r ~< 0.1 , i.e., relatively close to the planet-forming midplanes. We determine peak brightness temperatures of the optically thick CO isotopologues and use these to trace 2D disk temperature structures. Several CO temperature profiles and emission surfaces show dips in temperature or vertical height, some of which are associated with gaps and rings in line and/or continuum emission. These substructures may be due to local changes in CO column density, gas surface density, or gas temperatures, and detailed thermochemical models are necessary to better constrain their origins and relate the chemical compositions of elevated disk layers with those of planet-forming material in disk midplanes. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.Publisher PDFPeer reviewe

    Molecules with ALMA at Planet-forming Scales (MAPS). I. Program overview and highlights

    Get PDF
    Funding: I.C. was supported by NASA through the NASA Hubble Fellowship grant HST-HF2-51405.001-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS5-26555. C.W. acknowledges financial support from the University of Leeds, Science and Technology Facilities Council of the United Kingdom (STFC), and UKRI (grant Nos. ST/R000549/1, ST/T000287/1, MR/T040726/1).Planets form and obtain their compositions in dust- and gas-rich disks around young stars, and the outcome of this process is intimately linked to the disk chemical properties. The distributions of molecules across disks regulate the elemental compositions of planets, including C/N/O/S ratios and metallicity (O/H and C/H), as well as access to water and prebiotically relevant organics. Emission from molecules also encodes information on disk ionization levels, temperature structures, kinematics, and gas surface densities, which are all key ingredients of disk evolution and planet formation models. The Molecules with ALMA at Planet-forming Scales (MAPS) ALMA Large Program was designed to expand our understanding of the chemistry of planet formation by exploring disk chemical structures down to 10 au scales. The MAPS program focuses on five disks-around IM Lup, GM Aur, AS 209, HD 163296, and MWC 480-in which dust substructures are detected and planet formation appears to be ongoing. We observed these disks in four spectral setups, which together cover ~50 lines from over 20 different species. This paper introduces the Astrophysical Journal Supplement's MAPS Special Issue by presenting an overview of the program motivation, disk sample, observational details, and calibration strategy. We also highlight key results, including discoveries of links between dust, gas, and chemical substructures, large reservoirs of nitriles and other organics in the inner disk regions, and elevated C/O ratios across most disks. We discuss how this collection of results is reshaping our view of the chemistry of planet formation.Publisher PDFPeer reviewe

    Terrestrial water storage changes in global endorheic regions, 2002-2016

    No full text
    This dataset provides decadal changes in total terrestrial water storage (TWS) across global endorheic basins, as observed by the Gravity Recovery and Climate Experiment (GRACE) satellites from April 2002 to March 2016. GRACE observations applied here are monthly equivalent water thickness (EWT) anomalies in the JPL 3-degree equal-area mason solution (JPL-RL05M version 2). Endorheic basin extents are acquired from the 15-second HydroSHEDS drainage basin dataset, with regional supplement of the Global Drainage Basin Database (GDBD). The global endorheic basins cover a total area of 33.7 million square kilometers, ranging from 52.8º S to 62.0º N and from 122.8º W to 157.6º E. TWS changes are calculated at two enumeration scales: 173 endorheic units and 10 endorheic zones (including Western North America, Dry Andes and Patagonia, Sahara and Arabia, Great Rift Valley and Southern Africa, Australia, Central Eurasia, and four secondary zones in Central Eurasia: the Caspian Sea Basin, the Aral Sea Basin, the Inner Tibetan Plateau, and Other Central Eurasia). At the unit scale, we provide 1) the trend of deseasonalized TWS anomalies from April 2002 to March 2016 and, 2) the trend uncertain (one standard deviation) propagated from the inherent errors in the original mascon data and the residuals of the best-fit linear trend fitting. At the zonal scale, we provide detailed monthly time series of 1) TWS anomalies (both original values and deseasonalized values) and 2) TWS uncertainties propagated from the inherent mason errors and rescaling uncertainties due to signal leakage in fringe mascons. Please see the source paper (Wang et al. 2018) for detailed data references, collections and processing
    corecore