5,401 research outputs found
The influence of thermal stress on the interface strength of a fibre-reinforced thermoplastic investigated by a novel single fibre technique
The present work focuses on further verification of the hypothesis that the level of apparent IFSS in glass fibre-reinforced thermoplastic composites can be modelled satisfactorily by assuming that the main component of the IFSS is actually due to a combination of thermal residual stress and static friction at the fibre-polymer interface. In order to obtain information on the temperature dependence of glass fibre - polypropylene IFSS we have adapted a thermo-mechanical analyser to enable interfacial microbond testing to be carried out in a well controlled temperature environment. Test results obtained by TMA-microbond testing showed excellent comparability with those obtained by normal microbond testing. The temperature dependence of IFSS of glass fibre - polypropylene was measured in the range from -40°C up to 100°C. The IFSS showed a highly significant inverse dependence on testing temperature
The influence of oxidative-thermal degradation of polypropylene on measured interface strength of glass fibre-polypropylene
It was previously found that thermal-oxidative degradation of the polypropylene could significantly affect the measured interfacial strength of glass fibre reinforced polypropylene (GF-PP) micro-composite. In this work, different approaches have been employed to justify this influence. Hot-stage microscopy was used to establish a degradation profile of PP microdroplets that had different initial dimensions and results revealed that the reduction in droplet dimensions was affected by not only its initial droplet size and but also the presence of the fibre in the droplet. The Young's moduli of PP microdroplets with different heat treatments were examined by using nanoindentation technique and the results showed that there was significant stiffness deterioration in degraded samples and the severity is also related to the droplet size for a given heat treatment. Comparison of adhesion for GF-PP was also made between degraded and non-degraded samples. It shows that non-degraded samples give much higher values for interface strength of GF-PP than degraded ones
A new quasi-exactly solvable problem and its connection with an anharmonic oscillator
The two-dimensional hydrogen with a linear potential in a magnetic field is
solved by two different methods. Furthermore the connection between the model
and an anharmonic oscillator had been investigated by methods of KS
transformation
Synchronisation of linear continuous multi-agent systems with switching topology and communication delay
A distributed dynamic output feedback control is designed by Scardovi and Sepulchre for the synchronization of a network of identical linear systems, known as agents in literature. The design is based on some mild conditions allowing switching topology. But it assumes that there is no time delay in signal transfer between the neighbouring agents. In this paper we extend their work to include known time delay in communications. Furthermore, our design has some special features: (a) the delay can be arbitrary and only need to be uniformly bounded by a constant, (b) the conditions that time delay should be the same and sufficiently small in some literature are not required here, and (c) no local buffer is required to store past data due to time-delay effect
Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes
Adsorption of hydrogen molecules on platinum-doped single-walled zigzag (8,0) boron nitride (BN) nanotube is investigated using the density-functional theory. The Pt atom tends to occupy the axial bridge site of the BN tube with the highest binding energy of â0.91 eV. Upon Pt doping, several occupied and unoccupied impurity states are induced, which reduces the band gap of the pristine BN nanotube. Upon hydrogen adsorption on Pt-doped BN nanotube, the first hydrogen molecule can be chemically adsorbed on the Pt-doped BN nanotube without crossing any energy barrier, whereas the second hydrogen molecule has to overcome a small energy barrier of 0.019 eV. At least up to two hydrogen molecules can be chemically adsorbed on a single Pt atom supported by the BN nanotube, with the average adsorption energy of â0.365 eV. Upon hydrogen adsorption on a Pt-dimer-doped BN nanotube, the formation of the Pt dimer not only weakens the interaction between the Pt cluster and the BN nanotube but also reduces the average adsorption energy of hydrogen molecules. These calculation results can be useful in the assessment of metal-doped BN nanotubes as potential hydrogen storage media
Adsorption of hydrogen molecules on the platinum-doped boron nitride nanotubes
Adsorption of hydrogen molecules on platinum-doped single-walled zigzag (8,0) boron nitride (BN) nanotube is investigated using the density-functional theory. The Pt atom tends to occupy the axial bridge site of the BN tube with the highest binding energy of â0.91 eV. Upon Pt doping, several occupied and unoccupied impurity states are induced, which reduces the band gap of the pristine BN nanotube. Upon hydrogen adsorption on Pt-doped BN nanotube, the first hydrogen molecule can be chemically adsorbed on the Pt-doped BN nanotube without crossing any energy barrier, whereas the second hydrogen molecule has to overcome a small energy barrier of 0.019 eV. At least up to two hydrogen molecules can be chemically adsorbed on a single Pt atom supported by the BN nanotube, with the average adsorption energy of â0.365 eV. Upon hydrogen adsorption on a Pt-dimer-doped BN nanotube, the formation of the Pt dimer not only weakens the interaction between the Pt cluster and the BN nanotube but also reduces the average adsorption energy of hydrogen molecules. These calculation results can be useful in the assessment of metal-doped BN nanotubes as potential hydrogen storage media
Mouse models of central nervous system ageing
Ageing is accompanied by decreased overall fitness and performance. Studying brain ageing in humans is challenging due to limited or no access to healthy tissue, limited opportunities for interventions and complicated confounding factors. The generation of mouse ageing models with uniform genetic backgrounds significantly contributed to understanding (brain) ageing at the molecular level. Research has focused on evolutionarily conserved mechanisms or pathways that control ageing to facilitate data extrapolation to humans. Understanding how these pathways contribute to pathological ageing may help us understand human central nervous system (CNS) ageing and assist in the development of possible therapeutic targets. In this review, we focus on the functional consequences and pathological changes in the CNS of ageing mouse models
H^+ -> W^+ l_i^- l_j^+$ decay in the two Higgs doublet model
We study the lepton flavor violating H^+ -> W^+ l_i^- l_j^+ and the lepton
flavor conserving $H^+ -> W^+ l_i^- l_i^+ (l_i=\tau, l_j=\mu) decays in the
general 2HDM, so called model III. We estimate the decay width \Gamma for LFV
(LFC) at the order of the magnitude of (10^{-11}-10^{-5}) GeV
((10^{-9}-10^{-4}) GeV), for 200 GeV\leq m_{H^\pm}\leq 400
GeV, and the intermediate values of the coupling
\bar{\xi}^{E}_{N,\tau \mu}\sim 5 GeV (\bar{\xi}^{E}_{N,\tau
\tau}\sim 30 GeV). We observe that the experimental result of the process
under consideration can give comprehensive information about the physics beyond
the standard model and the existing free parameters.Comment: 8 pages, 7 Figure
Remarks on the Rayleigh-Benard Convection on Spherical Shells
The main objective of this article is to study the effect of spherical
geometry on dynamic transitions and pattern formation for the Rayleigh-Benard
convection. The study is mainly motivated by the importance of spherical
geometry and convection in geophysical flows. It is shown in particular that
the system always undergoes a continuous (Type-I) transition to a
-dimensional sphere , where lc is the critical wave length
corresponding to the critical Rayleigh number. Furthermore, it has shown in
[12] that it is critical to add nonisotropic turbulent friction terms in the
momentum equation to capture the large-scale atmospheric and oceanic
circulation patterns. We show in particular that the system with turbulent
friction terms added undergoes the same type of dynamic transition, and obtain
an explicit formula linking the critical wave number (pattern selection), the
aspect ratio, and the ratio between the horizontal and vertical turbulent
friction coefficients
Energy Quantisation in Bulk Bouncing Tachyon
We argue that the closed string energy in the bulk bouncing tachyon
background is to be quantised in a simple manner as if strings were trapped in
a finite time interval. We discuss it from three different viewpoints; (1) the
timelike continuation of the sinh-Gordon model, (2) the dual matrix model
description of the (1+1)-dimensional string theory with the bulk bouncing
tachyon condensate, (3) the c_L=1 limit of the timelike Liouville theory with
the dual Liouville potential turned on. There appears to be a parallel between
the bulk bouncing tachyon and the full S-brane of D-brane decay. We find the
critical value \lambda_c of the bulk bouncing tachyon coupling which is
analogous to \lambda_o=1/2 of the full S-brane coupling, at which the system is
thought to be at the bottom of the tachyon potential.Comment: 25 pages, minor changes, one reference adde
- âŠ