1,061 research outputs found

    Convergence and Refinement of the Wang-Landau Algorithm

    Full text link
    Recently, Wang and Landau proposed a new random walk algorithm that can be very efficiently applied to many problems. Subsequently, there has been numerous studies on the algorithm itself and many proposals for improvements were put forward. However, fundamental questions such as what determines the rate of convergence has not been answered. To understand the mechanism behind the Wang-Landau method, we did an error analysis and found that a steady state is reached where the fluctuations in the accumulated energy histogram saturate at values proportional to [log(f)]1/2[\log(f)]^{-1/2}. This value is closely related to the error corrections to the Wang-Landau method. We also study the rate of convergence using different "tuning" parameters in the algorithm.Comment: 6 pages, submitted to Comp. Phys. Com

    Temperature dependence of Vortex Charges in High Temperature Superconductors

    Get PDF
    Using a model Hamiltonian with d-wave superconductivity and competing antiferromagnetic (AF) interactions, the temperature (T) dependence of the vortex charge in high T_c superconductors is investigated by numerically solving the Bogoliubov-de Gennes equations. The strength of the induced AF order inside the vortex core is T dependent. The vortex charge could be negative when the AF order with sufficient strength is present at low temperatures. At higher temperatures, the AF order may be completely suppressed and the vortex charge becomes positive. A first order like transition in the T dependent vortex charge is seen near the critical temperature T_{AF}. For underdoped sample, the spatial profiles of the induced spin-density wave and charge-density wave orders could have stripe like structures at T < T_s, and change to two-dimensional isotropic ones at T > T_s. As a result, a vortex charge discontinuity occurs at T_s.Comment: 5 pages, 5 figure

    Theory of Magnetic Field Induced Spin Density Wave in High Temperature Superconductors

    Full text link
    The induction of spin density wave (SDW) and charge density wave (CDW) orderings in the mixed state of high TcT_c superconductors (HTS) is investigated by using the self-consistent Bogoliubov-de Gennes equations based upon an effective model Hamiltonian with competing SDW and d-wave superconductivity interactions. For optimized doping sample, the modulation of the induced SDW and its associated CDW is determined by the vortex lattice and their patterns obey the four-fold symmetry. By deceasing doping level, both SDW and CDW show quasi-one dimensional like behavior, and the CDW has a period just half that of the SDW along one direction. From the calculation of the local density of states (LDOS), we found that the majority of the quasi-particles inside the vortex core are localized. All these results are consistent with several recent experiments on HTS

    Understanding the Observed Evolution of the Galaxy Luminosity Function from z=6-10 in the Context of Hierarchical Structure Formation

    Full text link
    Recent observations of the Lyman-break galaxy (LBG) luminosity function (LF) from z~6-10 show a steep decline in abundance with increasing redshift. However, the LF is a convolution of the mass function of dark matter halos (HMF)--which also declines sharply over this redshift range--and the galaxy-formation physics that maps halo mass to galaxy luminosity. We consider the strong observed evolution in the LF from z~6-10 in this context and determine whether it can be explained solely by the behavior of the HMF. From z~6-8, we find a residual change in the physics of galaxy formation corresponding to a ~0.5 dex increase in the average luminosity of a halo of fixed mass. On the other hand, our analysis of recent LF measurements at z~10 shows that the paucity of detected galaxies is consistent with almost no change in the average luminosity at fixed halo mass from z~8. The LF slope also constrains the variation about this mean such that the luminosity of galaxies hosted by halos of the same mass are all within about an order-of-magnitude of each other. We show that these results are well-described by a simple model of galaxy formation in which cold-flow accretion is balanced by star formation and momentum-driven outflows. If galaxy formation proceeds in halos with masses down to 10^8 Msun, then such a model predicts that LBGs at z~10 should be able to maintain an ionized intergalactic medium as long as the ratio of the clumping factor to the ionizing escape fraction is C/f_esc < 10.Comment: 15 pages, 2 figures; results unchanged; accepted by JCA

    Charged Higgs bosons in the Next-to MSSM (NMSSM)

    Full text link
    The charged Higgs boson decays H±W±A1H^\pm\to W^\pm A_1 and H±W±hiH^\pm\to W^\pm h_i are studied in the framework of the next-to Minimal Supersymmetric Standard Model (NMSSM). It is found that the decay rate for H±W±A1H^\pm\to W^\pm A_1 can exceed the rates for the τ±ν\tau^\pm\nu and tbtb channels both below and above the top-bottom threshold. The dominance of H±W±A1H^\pm\to W^\pm A_1 is most readily achieved when A1A_1 has a large doublet component and small mass. We also study the production process ppH±A1pp\to H^\pm A_1 at the LHC followed by the decay H±W±A1H^\pm\to W^\pm A_1 which leads to the signature W±A1A1W^\pm A_1 A_1. We suggest that ppH±A1p p\to H^\pm A_1 is a promising discovery channel for a light charged Higgs boson in the NMSSM with small or moderate tanβ\tan\beta and dominant decay mode H±W±A1H^\pm \to W^\pm A_1. This W±A1A1W^\pm A_1 A_1 signature can also arise from the Higgsstrahlung process ppW±h1pp\to W^\pm h_1 followed by the decay h1A1A1h_1\to A_1 A_1. It is shown that there exist regions of parameter space where these processes can have comparable cross sections and we suggest that their respective signals can be distinguished at the LHC by using appropriate reconstruction methods.Comment: 20 pages, 22 eps figures, more reference adde

    Quantum computing implementations with neutral particles

    Full text link
    We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.Comment: 19 pages, 12 figures; From the issue entitled "Special Issue on Neutral Particles

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψγηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+Kπ+π\gamma K^+K^-\pi^+\pi^-, γπ+ππ+π\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π\gamma K^\pm K^0_S \pi^\mp (with KS0π+πK^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕK+K\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.

    A Measurement of Psi(2S) Resonance Parameters

    Full text link
    Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been measured in the vicinity of the Psi(2S) resonance using the BESII detector operated at the BEPC. The Psi(2S) total width; partial widths to hadrons, pi+pi- J/Psi, muons; and corresponding branching fractions have been determined to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)= (2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)= (97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%, respectively.Comment: 8 pages, 6 figure
    corecore